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Abstract. Let G be a finite group, K be a number field, n be an integer. In this short note, we prove that if C is

an irreducible family of branched G-covers of P1 containing covers defined over K branched at each subset S ⊂ K of

size n, then a cover in C is determined by its branch points. In other words, a construction of regular G-extensions

of Q(T ) which works for all choices of branch points cannot do much better than the rigidity method.

Let G be a finite group, n be an integer, and H be the Hurwitz space classifying non-marked G-covers of
P1 equipped with n distinct labeled points of A1 outside which the cover is unramified. The Q-scheme H
is a finite étale cover of the configuration space PConfn of n distinct labeled points of A1, which is the
open subscheme of An

Q obtained by removing the “big diagonal” (the closed subscheme corresponding to any
equality between two points). The study of rational points of H is central in inverse Galois theory: indeed, if
K is a number field and the group G retracts on its center1, K-points of H correspond to Galois extensions
F |K(T ) of group G which are regular (i.e. F ∩Q̄ = K) and have n ramified primes, all of degree 1. Moreover,
these extensions may be specialized into G-extensions of K by Hilbert’s irreducibility theorem. One of the
key tools to find rational points on Hurwitz spaces is the rigidity criterion, introduced by Thompson to
realize the Monster group as a Galois group over Q.

Deterministic components. Let C be a geometrically connected component of H. We say that C is
deterministic if the étale cover C → (PConfn)Q̄ is of degree 1, i.e., for every t ∈ PConfn(Q̄) there is a
unique cover branched at t belonging to C(Q̄). If C is deterministic and defined over a number field K,
then the unique point above any configuration t ∈ PConfn(K) is automatically K-rational, so that finding
a deterministic component defined over K implies the existence of K-points in H. We define the following
set:

Σ =
{
(g1, . . . , gn) ∈ Gn

∣∣∣ g1 · · · gn = 1 and ⟨g1, . . . , gn⟩ = G
}
.

and we say that a tuple (g1, . . . , gn) ∈ Σ is deterministic if it is conjugate to every tuple in its orbit under the
Hurwitz action of the pure braid group PBn; one only needs to check this for the

(
n
2

)
standard generators

of PBn. Via the choice of distinguished generators of the fundamental group of the n-punctured sphere,
we have a bijection between deterministic components of H and PBn-orbits (equivalently, Inn(G)-orbits) of
deterministic tuples. Note that the “standard Hurwitz curve” obtained from a deterministic component by
fixing all branch points except t1 is isomorphic to P1 \ {t2, . . . , tn}, and therefore is of genus zero. Note also
that deterministic components correspond to the case U = PBn of the more general definition [MM99, III
5.1 (5.8)].

Relation with rigidity. Let c = (c1, . . . , cn) be a list of conjugacy classes of G. Let Hc be the subscheme
of H classifying covers with monodromy conjugacy classes at the branch locus t = (t1, . . . , tn) given by
(c1, . . . , cn). The list c is rigid if Σc = Σ∩ (c1×· · ·× cn) is a single orbit for the conjugacy action of G. This
amounts to two simultaneous things, that we think are worth separating:

1. Hc is geometrically connected, i.e. Σc consists of a single PBn-orbit

2. Assuming 1., the geometrically connected component Hc of H is deterministic.

These two hypotheses serve different goals: as we have seen, that a component is deterministic (point 2.)
lets one find K-rational points when the component is defined over K. That Hc is geometrically connected
is used to obtain a component with a known field of definition: indeed, the smallest field of definition of Hc

1i.e., the identity Z(G) → Z(G) extends to a morphism G → Z(G); equivalently, Z(G) is a direct factor of G. Noteworthy
examples are G centerless or abelian, e.g. G simple.
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is the smallest cyclotomic extension of Q over which the conjugacy classes c1, . . . , cn are all rational. In some
ways, the usual rigidity criterion is rigid in two different ways: since there is a single component C in Hc, it
can only be mapped onto itself by Gal(Q̄|K) and therefore C is defined over K; and since there is a single
point in C above any configuration t ∈ PConf(K), this point can only be mapped onto itself by Gal(Q̄|K)
and therefore is K-rational.

Main result. Let K be a number field. A celebrated theorem of Thompson says: if G retracts on its center
and if (c1, . . . , cn) is a rigid tuple of K-rational conjugacy classes of G, then for every t ∈ PConfn(K) there
is a unique regular field extension of K(T ) with Galois group G unramified outside t whose monodromy
conjugacy class at ti is ci. Our main result is a sort of converse:

Theorem. — Let C be a geometrically connected component of H. If above every configuration t ∈
PConfn(Q) there is a K-point in the component C, then C is deterministic.

Proof. Since C contains K-points, it is defined over K: we have a finite étale K-morphism p from C
to the quasi-affine smooth scheme (PConfn)K . By Hilbert’s irreducibility theorem, there is a K-point t ∈
PConfn(Q) above which the fiber is irreducible over K, i.e. the elements of the finite set Ct = p−1(t) ⊆ C(Q̄)
are permuted transitively by Gal(Q̄|K). By hypothesis, there is a K-point x in Ct. The action of Gal(Q̄|K)
on Ct is transitive and has a fixed point x; this implies Ct = {x} and therefore p is a cover of degree 1. □

We also prove a variant using the language of thin sets:

Theorem. — Let K be a Hilbertian field (e.g. a number field), n be an integer. Assume that for every
S ∈ PConfn(K) there is a regular G-extension of K(T ) unramified outside S. Then, there is an n-tuple
(g1, . . . , gn) ∈ Σ which is deterministic and such that the corresponding component of H is defined over K.

Proof. Denote by p the étale mapH → PConfn. LetH1, . . . ,Hr be the geometrically irreducible components
of H defined over K. We have H(K) =

⊔r
i=1 Hi(K). Moreover, by the hypothesis, we have p(H(K)) =

PConfn(K). Let ∆ = An(K) \ PConfn(K), which is a proper Zariski-closed subset of An(K). Then:

An(K) = ∆ ∪ PConfn(K) = ∆ ∪ p(H(K)) = ∆ ∪
r⋃

i=1

pi(Hi(K))

where pi denotes the restricted étale cover Hi → PConfn. Assume by contradiction that H has no deter-
ministic component defined over K. Then, for every i ∈ {1, . . . , r}, the cover pi is of degree at least 2. By
definition, pi(Hi(K)) is a thin set; as a finite union of thin sets, An(K) is a thin set, which is impossible
since K is Hilbertian. □

A note on the n = 3 case. The theorem is of no use when n = 3, because

Proposition. — Every 3-tuple (a, b, c) ∈ Σ is deterministic.

Proof. The pure braids σ2
1 , σ

2
2 and σ−1

1 σ2
2σ1 generate PB3. If abc = 1, then braid computations show that:

σ2
1 .(a, b, c) = c−1(a, b, c)c

σ2
2 .(a, b, c) = a−1(a, b, c)a

(σ−1
1 σ2

2σ1).(a, b, c) = ac(a, b, c)c−1a−1

Here is an amusing alternative “computation-free” proof: let C be the component of HQ̄ corresponding to
(a, b, c). Take any point x ∈ C(Q̄) and let K be a number field over which x is K-rational. The action of
PSL2(K) on H(K) stabilizes C(K) because PSL2(C) is connected, so the PSL2(K)-orbit of x is included in
C(K). Since PSL2(K) acts simply transitively on PConf3(K), the PSL2(K)-orbit of x consists of a K-point
of C above every K-point of PConf3. By the theorem (proving its own uselessness!), C is deterministic. □
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Computations in the case n = 4. Let a, b, c, d ∈ G such that abcd = 1. As noted in [Hä22, Corollary
3.1], the action of PB4 on (a, b, c, d) is entirely determined by the action of σ2

1 and σ−1
1 σ2

2σ1. Using the
notation ā = a−1, b̄ = b−1, etc., we have:

σ2
1 .(a, b, c, d) = (aba(ab)−1, aba−1, c, d) = ab(a, b, cdcd̄c̄, cdc̄)b̄ā

σ−1
1 σ2

2σ1.(a, b, c, d) = (acac̄ā, acāc̄bcac̄ā, acā, d) = ac(a, āc̄bca, c, c̄ādac)c̄ā.

Therefore, (a, b, c, d) is deterministic if and only if, by denoting Za, Zb, Zc, Zd the centralizers of a, b, c, d, the
sets Za ∩ Zb ∩ cZd and Za ∩ Zc ∩ Zdac are both nonempty. Using the notation HH ′ for the product of two
subgroups of G, this amounts to requiring that c ∈ (Za ∩ Zb)Zd and ac ∈ Zd(Za ∩ Zc).

Assume that Z(G) = 1. If G is generated by a and b (or a and c), then Za ∩Zb = 1 (resp. Za ∩Zc = 1);
in that case, if (a, b, c, d) is deterministic then c and d commute (resp. ac and d commute). In particular,
a 4-tuple of “Harbater-Mumford type” (x, x−1, y, y−1), with G = ⟨x, y⟩ a nontrivial centerless group, is
never deterministic. This is unfortunate, as Harbater-Mumford components are among those whose fields of
definition are best understood (see [DE06; Cau12; Seg23]). Heuristically, the 4-tuples g ∈ Σ that have the
best likelihood to be deterministic are those whose elements belong to small conjugacy classes (so that the
centralizers are big) and such that no two elements suffice to generate G.

Lifting invariants and deterministic-rigid pairs. Let K be a number field, c = (c1, . . . , cn) be a list
of K-rational conjugacy classes of G, and c =

⋃
i ci One can prescribe more than the monodromy classes,

namely the lifting invariant introduced by Fried and revisited by Ellenberg, Venkatesh and Westerland. We
review this invariant, following [Woo21] closely.

Let p : S ↠ G be a Schur cover of G. In particular, S is a central extension of G byH2(G,Z) = ker(p). Let
Qc be the normal subgroup of S generated by commutators [a, b] of elements a, b ∈ S such that p(a), p(b) ∈ c
and p(ab) = p(ba). Note that Qc is included in H2(G,Z). We let H2(G, c) = H2(G,Z)/Qc. Choose for every
conjugacy class ci an element xi ∈ S such that p(xi) ∈ ci, and such that xi = xj each time ci = cj . Now, if
g is an element of ci and γ is any element of S such that g = p(γxiγ

−1), the element γxiγ
−1 of S depends

on the choice of γ only up to an element of Qc; let ĝ be its image in S/Qc, which does not depend on γ.
If (g1, . . . , gn) ∈ Σc, we consider the element Π(g1, . . . , gn) = ĝ1 · · · ĝn ∈ S/Qc. This element has image

g1 · · · gn = 1 in G and therefore belongs to H2(G,Z)/Qc = H2(G, c). This is an invariant of the Bn-
orbit of (g1, . . . , gn), called its lifting invariant. Let K be a number field. The action of an automorphism
σ ∈ Gal(Q̄|K) on a component corresponds to a well-described action on its lifting invariant ι = Π(g1, . . . , gn):

σ.ι = ιχ(σ)
n∏

i=1

(
x
−χ(σ)
i

̂p(xi)χ(σ)
)
.

If ι ∈ H2(G, c), we say that the pair (c, ι) is K-rational if c consists of K-rational conjugacy classes and ι is
invariant under the action of Gal(Q̄|K). We can then define:

Σc,ι = {g ∈ Σc | Π(g) = ι} ΣI c,ι = {g ∈ Σc,ι | g is deterministic}.

Let (c, ι) be a K-rational pair. If C is a deterministic geometrically irreducible component of H and
σ ∈ Gal(Q̄|K), then the component σ.C is deterministic too. By choosing adequate generators of the
fundamental group of the n-punctured sphere, this induces a Galois action of Gal(Q̄|K) on ΣI c,ι. A fixed
point of this action corresponds to a deterministic component of Hc which has lifting invariant ι and is
defined over K.

This approach leads to a criterion (generalized in several ways in [MM99]): we say that the pair (c, ι) is
deterministic-rigid if

∣∣ΣI c,ι∣∣ = |Inn(G)|, i.e. if ΣI c,ι consists of a single Inn(G)-orbit, or equivalently of a single
PBn-orbit. If (c, ι) is deterministic-rigid, then there is a unique deterministic component of Hc with lifting
invariant ι, and it is defined over K; if moreover G retracts on its center, then for any set S of n K-rational
branch points, G is the Galois group of a regular extension of K(T ) unramified outside S. By the discussions
above, this criterion is equivalent to usual rigidity criteria when n = 3, but is finer for larger n.

By a theorem of Conway and Parker and further improvements by Fried-Völklein/Ellenberg-Venkatesh-
Westerland/Wood [Woo21, Theorem 3.1], there is a constant M such that if all conjugacy classes in the list
c = (c1, . . . , cn) appear at least M times, then components of Hc are determined by their lifting invariant.
In this setting where branch points are numerous, one has a good understanding of the fields of definition of
components; however, components with many branch points also tend to have a high degree: heuristically, the
number of G-covers (including non-connected ones) branched at a configuration t ∈ PConfn is about |G|n−2

,
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whereas the number of components grows polynomially with n (see [Seg22]). Therefore, large tuples are rarely
deterministic, but fields of definition of components associated to small tuples are not well-understood: this
makes it hard to use deterministic components to find rational points in situations where we do not have
rigidity.

Unordered branch loci and non-rational conjugacy classes. We have focused on the situation where
all branch points are K-rational, i.e. the branch locus is a K-rational point of the configuration space of
ordered configurations. This has led us to restrict our attention to K-rational conjugacy classes and to pure
braids. The condition that the branch points be K-rational is restrictive. For example, it was shown in
[DF94] that if K has a real embedding, then only groups generated by involutions are realized by regular
Galois extensions of K(T ) with all branch points K-rational.

Instead, we may look at unordered branch loci. Then, we need that the set of branch points be permuted
by Gal(Q̄|K), and that the list of conjugacy classes (c1, . . . , cn) be invariant up to permutation under the
exponentiation action of the image of the cyclotomic character χ : Gal(Q̄|K) → (Z/ |G|Z)×. The problem
is that, in that context, components are rarely deterministic since any braid exchanging two branch points
will yield a cover ramified at the same unordered configuration but often not isomorphic (e.g. if there are
two non-equal conjugacy classes).

A solution, which is essentially the setting of [MM99, III 5.1], is to use a space of colored unordered
configurations, where branch points are colored according to the monodromy class. If (c1, . . . , cn) is a tuple
of conjugacy classes, the topological fundamental group of that colored configuration space is the subgroup
B

c
n of Bn consisting of braids whose image in Sn is a permutation which respects colors (i.e. it fixes the

partition of {1, . . . , n} induced by the equivalence relation “i ∼ j if ci = cj”). The correct generalization of
deterministic components is then: a tuple (g1, . . . , gn) is deterministic if it is conjugate to every tuple in its
B

c
n-orbit. One can then reproduce the results of this note.
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