Lifting morphisms with the power of choice

September 28, 2019

Let $p: A \rightarrow B$ be a morphism of rings and $I=\operatorname{ker}(p)$. We assume that p is surjective and that $I^{2}=0$.

Let $\rho: G \rightarrow G L_{n}(B)$ be a group morphism.

1 An action of G on $\mathfrak{M}_{n}(I)$

We define an action of G on $\mathfrak{M}_{n}(I)$ in the following way : if $\rho^{\prime}: G \rightarrow G L_{n}(A)$ is a map (nothing more!) lifting $G L_{n}(B)$, we write :

$$
g \cdot M=\rho^{\prime}(g) M \rho^{\prime}(g)^{-1}
$$

which indeed is in $\mathfrak{M}_{n}(I)$. Let's show that it doesn't depend on ρ^{\prime}. Let ρ_{2}^{\prime} be another set-theoretical lift of ρ. Then :

$$
p_{*}\left(\rho^{\prime}\left(\rho_{2}^{\prime}\right)^{-1}\right)=\rho \rho^{-1}=I_{n}
$$

so $\rho^{\prime}(g)\left(\rho_{2}^{\prime}\right)^{-1}(g)=I_{n}+M(g)$ with $M(g) \in \mathfrak{M}_{n}(I)$. We have

$$
\rho^{\prime}(g)^{-1}=\rho_{2}^{\prime}(g)^{-1}\left[I_{n}+M(g)\right]^{-1}
$$

and since $\left[I_{n}+M(g)\right]\left[I_{n}-M(g)\right]=I_{n}-M(g)^{2}=I_{n}$ we can write

$$
\rho^{\prime}(g)^{-1}=\rho_{2}^{\prime}(g)^{-1}\left[I_{n}-M(g)\right]
$$

So :
$\rho^{\prime}(g) M \rho^{\prime}(g)^{-1}=\left[I_{n}+M(g)\right] \rho_{2}^{\prime}(g) M \rho_{2}^{\prime}(g)^{-1}\left[I_{n}-M(g)\right]=\rho_{2}^{\prime}(g) M \rho_{2}^{\prime}(g)^{-1}+\left(\right.$ stuff in $\left.I^{2}\right)$
Now, a very classic argument shows that since $g \cdot M$ doesn't depend on ρ^{\prime}, the axiom of choice (which seems required to show that such a ρ^{\prime} exists) is not needed to define this action.

When $\mathfrak{M}_{n}(I)$ is equipped by this action, we shall call it $\operatorname{ad}(\rho)$.

2 Measuring non-homomorphicity with 2-cocycles

Assume $\rho^{\prime}: G \rightarrow G L_{n}(A)$ is a map (nothing more!) lifting $G L_{n}(B)$, that is such that $p_{*}\left(\rho^{\prime}\right)=\rho$.

Then we can associate the following to ρ^{\prime} :

$$
d(a, b)=\rho^{\prime}(a b) \rho^{\prime}(b)^{-1} \rho^{\prime}(a)^{-1}
$$

This is a $\operatorname{map} G^{2} \rightarrow G L_{n}(A)$, and moreover :

$$
p(d(a, b))=\rho(a b) \rho(b)^{-1} \rho(a)^{-1}=I_{n}
$$

and so $d(a, b)$ is of the form $I_{n}+e(a, b)$ with $e: G^{2} \rightarrow \mathfrak{M}_{n}(I)$.
We can write :

$$
\rho^{\prime}(a b)=d(a, b) \rho^{\prime}(a) \rho^{\prime}(b)=\left(I_{n}+e(a, b)\right) \rho^{\prime}(a) \rho^{\prime}(b)
$$

Now we can compute $\rho^{\prime}(a b c)$ in two different ways :

$$
\begin{aligned}
& \rho^{\prime}((a b) c)=d(a b, c) \rho^{\prime}(a b) \rho^{\prime}(c) \\
&=d(a b, c) d(a, b) \rho^{\prime}(a) \rho^{\prime}(b) \rho^{\prime}(c) \\
&=\left[I_{n}+e(a b, c)\right]\left[I_{n}+e(a, b)\right] \rho^{\prime}(a) \rho^{\prime}(b) \rho^{\prime}(c) \\
& \rho^{\prime}(a(b c))=d(a, b c) \rho^{\prime}(a) \rho^{\prime}(b c) \\
&=d(a, b c) \rho^{\prime}(a) d(b, c) \rho^{\prime}(b) \rho^{\prime}(c) \\
&=d(a, b c) \rho^{\prime}(a) d(b, c) \rho^{\prime}(a)^{-1} \rho^{\prime}(a) \rho^{\prime}(b) \rho^{\prime}(c) \\
&=\left[I_{n}+e(a, b c)\right]\left[I_{n}+\rho^{\prime}(a) e(b, c) \rho^{\prime}(a)^{-1}\right] \rho^{\prime}(a) \rho^{\prime}(b) \rho^{\prime}(c)
\end{aligned}
$$

Now these have to be equal, and ρ^{\prime} goes into $G L_{n}(A)$ so :

$$
\begin{aligned}
{\left[I_{n}+e(a b, c)\right]\left[I_{n}+e(a, b)\right] } & =\left[I_{n}+e(a, b c)\right]\left[I_{n}+\rho^{\prime}(a) e(b, c) \rho^{\prime}(a)^{-1}\right] \\
I_{n}+e(a b, c)+e(a, b)+e(a b, c) e(a, b) & =I_{n}+e(a, b c)+\rho^{\prime}(a) e(b, c) \rho^{\prime}(a)^{-1}+e(a, b c) \rho^{\prime}(a) e(b, c) \rho^{\prime}(a)^{-1} \\
e(a b, c)+e(a, b) & =e(a, b c)+\rho^{\prime}(a) e(b, c) \rho^{\prime}(a)^{-1}
\end{aligned}
$$

(We used that $I^{2}=0$ to cancel the $e \times e$ terms)
This amounts to saying that e is a 2 -cocycle for the action of G on $\operatorname{ad}(\rho)$.
Now if ρ_{2}^{\prime} is another lifting of ρ (and e_{2} the associated 2-cocycle), let $m=$ $\rho_{2}^{\prime}-\rho^{\prime}$. We have $m: G \rightarrow \mathfrak{M}_{n}(I)$, and :

$$
\begin{aligned}
e_{2}\left(g_{1}, g_{2}\right)= & \rho_{2}^{\prime}\left(g_{1} g_{2}\right) \rho_{2}^{\prime}\left(g_{2}\right)^{-1} \rho_{2}^{\prime}\left(g_{1}\right)^{-1}-I_{n} \\
= & \rho^{\prime}\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1}-I_{n} \\
& +m\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1} \\
& +\rho^{\prime}\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} m\left(g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1} \\
& +\rho^{\prime}\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1} m\left(g_{1}\right) \rho^{\prime}\left(g_{1}\right)^{-1} \\
& +\left(\text { stuff in } I^{2}\right) \\
= & e\left(g_{1}, g_{2}\right) \\
& +m\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2} g_{1}\right)^{-1}+\left(\operatorname{stuff} \text { in } I^{2}\right) \\
& +\rho^{\prime}\left(g_{1}\right) \rho^{\prime}\left(g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} m\left(g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1}+\left(\text { stuff in } I^{2}\right) \\
& +\rho^{\prime}\left(g_{1}\right) \rho^{\prime}\left(g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1} m\left(g_{1}\right) \rho^{\prime}\left(g_{1}\right)^{-1}+\left(\text { stuff in } I^{2}\right) \\
= & e\left(g_{1}, g_{2}\right) \\
& +m\left(g_{1} g_{2}\right) \rho^{\prime}\left(g_{2} g_{1}\right)^{-1} \\
& +\rho^{\prime}\left(g_{1}\right) m\left(g_{2}\right) \rho^{\prime}\left(g_{2}\right)^{-1} \rho^{\prime}\left(g_{1}\right)^{-1} \\
& +m\left(g_{1}\right) \rho^{\prime}\left(g_{1}\right)^{-1}
\end{aligned}
$$

So if we define $\alpha(g)=m(g) \rho^{\prime}(g)^{-1}$ we have :

$$
e_{2}\left(g_{1}, g_{2}\right)-e\left(g_{1}, g_{2}\right)=\alpha\left(g_{1} g_{2}\right)+g_{1} \cdot \alpha\left(g_{2}\right)+\alpha\left(g_{1}\right)
$$

Which is exactly to say that $e_{2}-e$ is a 2 -coboundary. The same computations read backwards show that every 2 -coboundary defines similarly another lifting of ρ.

3 What happens if I assume choice ?

When we assume choice, the surjection $G L_{n}(A) \rightarrow G L_{n}(B)$ admits a section, and so there always exists at least one set-theoretical lifting of ρ. In that case, the (non-empty) set of all set-theoretic liftings of ρ is exactly one cohomology class in :

$$
H^{2}(G, \operatorname{ad}(\rho))
$$

If this cohomology class is trivial (e.g. when $H^{2}(G, \operatorname{ad}(\rho))=0$), this means that the 2 -cocycle 0 is in it, so there is a set-theoretic lifting ρ^{\prime} of ρ such that the corresponding e is zero, that is to say ρ^{\prime} is a group morphism.

We have a theorem :
Theorem 1 (in ZFC). Let $p: A \rightarrow B$ be a morphism of rings and $I=\operatorname{ker}(p)$. We assume that p is surjective and that $I^{2}=0$. Let $\rho: G \rightarrow G L_{n}(B)$ be a group morphism, and assume :

$$
H^{2}(G, \operatorname{ad}(\rho))=0
$$

Then there exists a group morphism $\rho^{\prime}: G \rightarrow G L_{n}(A)$ such that $\rho=p_{*}\left(\rho^{\prime}\right)$.

4 Is choice required ?

When we look at what happens before, it seems that choice is only useful to show that the cohomology class we're speaking of is well-defined. This inspires the following question :

Question 1. Are there models of $Z F$ in which theorem 1 doesn't hold?
The fact that the definition of $\operatorname{ad}(\rho)$ seems to require choice but in fact doesn't might be a clue that this is not true.

