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Part 1:
The Inverse Galois Problem, G -covers and Hurwitz schemes
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The Inverse Galois Problem

Question (Inverse Galois Problem (IGP))

G a finite group. Is there a Galois extension K | Q whose Galois group is isomorphic to G?

Shafarevich ’58 : yes if G is solvable.
General case: wide open.

Remark (Van der Waerden conjecture, proposed proof by Barghava ’21)

Among the (2H + 1)n unitary polynomials of degree n whose coefficients are in {−H, . . . ,H},
only O(Hn−1) have a Galois group not isomorphic to Sn.

We are looking for a needle in a haystack!
The Malle conjecture: a stronger conjecture which predicts the exact distribution of field
extensions.
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The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G )

Is there a regular Galois extension F | Q(t) of Galois group G?

”Regular” means F ∩Q = Q

Why bother?

RIGP ⇒ IGP.
Follows from Hilbert’s Irreducibility Theorem⇝ Basis of modern Inverse Galois Theory.

Extensions of function fields have a geometric meaning:{
regular Galois extension of Q(t)

of Galois group G

}
≃

{
connected G -cover
defined over Q.

}
.

What are these objects?
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G -covers

Confn: configuration space for n (distinct, unordered) points in P1(C).

Definition

A G -cover branched at t ∈ Confn is an unramified cover p of P1(C) \ t, equipped with a
morphism α : G → Aut(p) which induces a free transitive action on every fiber.
A marked G -cover also comes with a marked point above a basepoint t0 ∈ P1(C) \ t.

Another perspective: a dominant finite morphism from a smooth curve Y onto P1
C, étale

outside t + an action of G , free/transitive on every unramified fiber.

If the curve Y is irreducible, its function field is a Galois extension of C(t) of group G :

{
Irreducible G -covers

}
≃

{
Galois extensions

F | C(t) of group G

}
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Fields of definition

A G -cover Y is defined over Q if there is a G -cover Y ′ → P1
Q such that the following

diagram is cartesian:

Y Y ′

P1
C P1

Q

i.e. the cover can be defined by polynomial equations with rational coefficients.

Main takeaway: G -covers defined over Q (with Y ′ irreducible) correspond to regular
Galois extensions of Q(t) of group G .

Question (Geometrical reformulation of RIGP for G )

Is there a G -cover defined over Q?
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Hurwitz schemes

The Hurwitz moduli scheme Hur∗(G , n) is a Q-scheme whose C-points are isomorphism
classes of marked G -covers with n branch points.

Hur∗(G , n)

Confn

The Hurwitz space is itself a cover of Confn,
given by the ”branch points” map.

Lifting a path in Confn
⇔ unique deformation of a G -cover as the branch points move around

Thompson ’84 : IGP for the Monster group (rigidity methods).
Later reinterpreted as the fact that there is an irreducible component X of
Hur(M, 3) such that X → Conf3 is an isomorphism.
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Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:

Morphisms S → Hur∗(G , n)
Marked G -covers Y → P1 ×

SpecQ
S

Take S = SpecQ:

{Q-points of Hur∗(G , n)} ≃


marked G -covers
defined over Q

with n branch points


Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G , n) for
non-marked G -covers is a coarse moduli space. When G is centerfree, it is a fine moduli space.
In this case its Q-points indeed correspond to non-marked covers defined over Q.
The regular inverse Galois problem for G becomes a problem of diophantine geometry:

Question

Does the Hurwitz scheme Hur(G , n) have rational points, for some n ∈ N?

Béranger Seguin Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

November 15, 2022 4th Kyoto-Nanjing Workshop on Arithmetic and Geometry 9
/
25



Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:

Morphisms S → Hur∗(G , n)
Marked G -covers Y → P1 ×

SpecQ
S

Take S = SpecQ:

{Q-points of Hur∗(G , n)} ≃


marked G -covers
defined over Q

with n branch points


Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G , n) for
non-marked G -covers is a coarse moduli space. When G is centerfree, it is a fine moduli space.
In this case its Q-points indeed correspond to non-marked covers defined over Q.

The regular inverse Galois problem for G becomes a problem of diophantine geometry:

Question

Does the Hurwitz scheme Hur(G , n) have rational points, for some n ∈ N?

Béranger Seguin Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

November 15, 2022 4th Kyoto-Nanjing Workshop on Arithmetic and Geometry 9
/
25



Hurwitz spaces and RIGP

Moduli space property: if S is a Q-scheme, then there is a (natural) bijection between:

Morphisms S → Hur∗(G , n)
Marked G -covers Y → P1 ×

SpecQ
S

Take S = SpecQ:

{Q-points of Hur∗(G , n)} ≃


marked G -covers
defined over Q

with n branch points


Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G , n) for
non-marked G -covers is a coarse moduli space. When G is centerfree, it is a fine moduli space.
In this case its Q-points indeed correspond to non-marked covers defined over Q.
The regular inverse Galois problem for G becomes a problem of diophantine geometry:

Question

Does the Hurwitz scheme Hur(G , n) have rational points, for some n ∈ N?

Béranger Seguin Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

November 15, 2022 4th Kyoto-Nanjing Workshop on Arithmetic and Geometry 9
/
25



Use of geometrical methods

Ellenberg, Venkatesh, Westerland, Tran ’16-’17, their strategy:

Homological information about Hurwitz spaces (combinatorial methods)

⇝ Count Fq-points using Grothendieck-Lefschetz methods (i.e. extensions of Fq(t))

⇝ Progress on Malle’s and Cohen-Lenstra’s conjectures over Fq(t).

Two reasons to study irreducible components of Hurwitz schemes:

Homology of Hurwitz spaces (including H0) is central in the strategy above

A Q-point has to belong to a component defined over Q
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Part 2:
Rings of components of Hurwitz schemes and their geometry

Béranger Seguin Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

November 15, 2022 4th Kyoto-Nanjing Workshop on Arithmetic and Geometry 11
/
25



Gluing and patching

Gluing operation on marked G -covers: G -cover
monodromy group H1

n branch points

×

 G -cover
monodromy group H2

n′ branch points

 =

 G -cover
monodromy group ⟨H1,H2⟩

n + n′ branch points



t1t2

t3 t4

t5
t6

∞ ∞

Glue two projective lines together

⇒ get a single projective line with more branch points!

t7

The connected component of the glued cover only depends on the connected components:
⇝ multiply components of

⊔
n Hur∗(G , n).

Remark: this is well defined for (components of) marked G -covers, but the interesting
arithmetic questions are for (components of) non-marked G -covers.
Patching theory (Harbater): A similar operation can be done with G -covers defined over K
when K is a complete valued field (C,K ((t)),Qp, . . .).
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The ring of components

k a field of characteristic zero.

Definition (Ring of components)

The ring of components R(G ) is the graded k-algebra
⊕

n H0(Hur
∗(G , n), k) equipped with

the multiplication induced by gluing.

Introduced by EVW in the case of components of covers of the affine line.
For P1:

Theorem (S. 22)

R(G ) is a commutative graded k-algebra of finite type.

⇝ I can define the scheme ProjR(G ) (variant of Spec for graded rings) and study it
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The splitting number

c = conjugacy class of G ;

R(G , c) = ring of components of marked G -covers with monodromy elements ∈ c

Splitting: if H ⊆ G , then c ∩ H may contain several classes. Let sH + 1 be their count:

c ⊆ G

d1 d2 . . . dsH dsH+1 ⊆ H

EVW prove homological stability when sH = 0 ⇝ how does it generalize?
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Geometry of rings of components

Theorem (S. 22)

The Krull dimension d of ProjR(G , c) equals maxH⊆G sH , and the count of components with
n branch points grows like nd .

I have a more precise version, dealing with each subgroup H.

I also have an expression of the leading coefficient:

Theorem (S. 22)

The count of components with n branch points and monodromy group H has an average order
given by:

|H2(H, c ∩ H)|
|Hab| sH !

nsH

for an explicit quotient H2(H, c ∩ H) of the second group homology of H.
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Example: symmetric groups

G = Sd and c the conjugacy class of transpositions.

The ring of components admits the presentation:

R(Sd , c) =
k[(Xij)1≤i<j≤d ]

(XijXjk = XikXjk = XijXik)1≤i<j<k≤d

Description of ProjR(Sd , c)(k) as a subvariety of P
d(d−1)

2
−1(k) of dimension ⌊d/2⌋ − 1:

one vertex eA for each subset A ⊆ {1, . . . , d} of size ≥ 2 ⇝ SA

the line (eA, eB) when A,B are disjoint ⇝ SA ×SB

the plane (eA, eB , eC ) when A,B,C are disjoint ⇝ SA ×SB ×SC

etc.
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Example of S3

{1, 2, 3}

{1, 2}

{1, 3}

{2, 3}

Figure: ProjR(S3, c)

dimension 0 ⇝ situation of EVW (homological stability)
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Example of S4

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4}

{3, 4} {2, 4} {2, 3}

Figure: ProjR(S4, c)

dimension 1 ⇝ no homological stability (linear growth)
(schematic drawing: the actual drawing is in 5D...)
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Example of S6?

To observe dimension 2, the smallest example is d = 6. Problem: many irreducible
components to draw (77 vertices, 160 lines, 15 planes) en 14D.
I draw only the part of the Proj corresponding to subsets of {1, 2, 3, 4, 5, 6} of size 2, i.e. the
15 planes, represented as triangles:
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Part 3:
Fields of definition of components of Hurwitz schemes
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Fields of definition and products

How does the product of components behave with the fields of definition?
(field of definition = of the underlying component of non-marked covers)
If x , y are components defined over Q, is xy also defined over Q?

Probably not true in general. A partial answer:

Theorem (Cau 12)

If x , y are components defined over Q,{
xgyg

′
∣∣∣ g , g ′ ∈ G

}
is stable under the action of Gal

(
Q | Q

)
.

If this set is a singleton ⇒ xy is defined over Q.
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A well-behaved situation

Theorem (S. 23)

If x , y are components defined over Q, denote their respective monodromy groups by H1,H2.
If H1H2 = ⟨H1,H2⟩ then for all σ ∈ Gal(Q | Q):

σ.(xy) = (σ.x)(σ.y).

Corollary

If x , y are components defined over Q and their monodromy groups H1,H2 satisfy H1H2 = G ,
then xy is defined over Q.

Corollary

If x is a component defined over Q and n ≥ 1, then xn is defined over Q.
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Lifting invariant methods

The lifting invariant is an invariant (introduced by EVW) with values in a group.
It can be used to study fields of definition. An example:

Theorem (S. 23)

For a constant M depending only on the group G , if x , y are components defined over Q and
xy has G as its monodromy group, then (xy)M is defined over Q.

Ingredients for the proof:

The lifting invariant of xγyγ
′
is equal to that of xy (not true for covers of A1!)

If every conjugacy class of G is the conjugacy class of either 0 or ≥ M local monodromy
elements, then the component is entirely determined by its lifting invariant (generalization
of the Conway-Parker theorem)

This implies xγyγ
′
= xy . Conclude by Cau’s theorem.
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Patching methods

Another theorem, proved using Harbater’s patching method:

Theorem (S. 23)

If x , y are components defined over Q, there are γ, γ′ ∈ G such that xγyγ
′
is defined over Q.

Sketch of proof.

Using Hilbert’s irreducibility theorem, construct an infinite sequence of fields K1,K2, . . .,
linearly disjoint over Q, such that there are covers fn ∈ x , gn ∈ y defined over Kn.

See fn, gn as covers defined over the complete field Kn((t)) and glue them together into a
cover hn defined over Kn((t)), which is ”in” the component xγnyγ

′
n for some γn, γ

′
n ∈ G .

Since there are finitely many components of the form xγyγ
′
, at least two of the covers

hn, hn′ belong to the same component xγyγ
′
.

The field of definition of xγyγ
′
is included in:

Q ∩ Kn((t)) ∩ Kn′((t)) = Q.
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Publications

My preprint: ”The Geometry of Rings of Components of Hurwitz Spaces”. arXiv:2210.12793
Forthcoming: ”Fields of Definition of Components of Hurwitz Spaces”.
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