Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

Béranger Seguin

Laboratoire Paul Painlevé, Université de Lille Département de Mathématiques et Applications, École Normale Supérieure

November 15, 2022 4th Kyoto-Nanjing Workshop on Arithmetic and Geometry

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

- **1** The Inverse Galois Problem, G-covers and Hurwitz schemes
- Q Rings of components of Hurwitz schemes and their geometry
- **③** Fields of definition of components of Hurwitz schemes

Part 1: The Inverse Galois Problem, *G*-covers and Hurwitz schemes

G a finite group. Is there a Galois extension $K \mid \mathbb{Q}$ whose Galois group is isomorphic to *G*?

G a finite group. Is there a Galois extension $K \mid \mathbb{Q}$ whose Galois group is isomorphic to G?

Shafarevich '58 : yes if *G* is solvable. General case: wide open.

G a finite group. Is there a Galois extension $K \mid \mathbb{Q}$ whose Galois group is isomorphic to G?

Shafarevich '58 : yes if *G* is solvable. General case: wide open.

Remark (Van der Waerden conjecture, proposed proof by Barghava '21)

Among the $(2H + 1)^n$ unitary polynomials of degree n whose coefficients are in $\{-H, \ldots, H\}$, only $O(H^{n-1})$ have a Galois group not isomorphic to \mathfrak{S}_n .

We are looking for a needle in a haystack!

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

G a finite group. Is there a Galois extension $K \mid \mathbb{Q}$ whose Galois group is isomorphic to G?

Shafarevich '58 : yes if *G* is solvable. General case: wide open.

Remark (Van der Waerden conjecture, proposed proof by Barghava '21)

Among the $(2H + 1)^n$ unitary polynomials of degree n whose coefficients are in $\{-H, \ldots, H\}$, only $O(H^{n-1})$ have a Galois group not isomorphic to \mathfrak{S}_n .

We are looking for a needle in a haystack!

The Malle conjecture: a stronger conjecture which predicts the exact distribution of field extensions.

The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)

Is there a regular Galois extension $F \mid \mathbb{Q}(t)$ of Galois group G?

"Regular" means $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$

The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)

Is there a regular Galois extension $F \mid \mathbb{Q}(t)$ of Galois group G?

"Regular" means $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$

Why bother?

• RIGP \Rightarrow IGP.

Follows from Hilbert's Irreducibility Theorem ~>> Basis of modern Inverse Galois Theory.

The Regular Inverse Galois Problem

G finite group.

Question (Regular Inverse Galois Problem (RIGP) for G)

Is there a regular Galois extension $F \mid \mathbb{Q}(t)$ of Galois group G?

"Regular" means $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$

Why bother?

• RIGP \Rightarrow IGP.

Follows from Hilbert's Irreducibility Theorem ~>> Basis of modern Inverse Galois Theory.

• Extensions of function fields have a geometric meaning:

$$\begin{cases} \text{regular Galois extension of } \mathbb{Q}(t) \\ \text{of Galois group } G \end{cases} \cong \begin{cases} \text{connected } G\text{-cover} \\ \text{defined over } \mathbb{Q}. \end{cases}$$

What are these objects?

 Conf_n : configuration space for *n* (distinct, unordered) points in $\mathbb{P}^1(\mathbb{C})$.

Definition

A *G*-cover branched at $\underline{t} \in \text{Conf}_n$ is an unramified cover p of $\mathbb{P}^1(\mathbb{C}) \setminus \underline{t}$, equipped with a morphism $\alpha : G \to \text{Aut}(p)$ which induces a free transitive action on every fiber. A marked *G*-cover also comes with a marked point above a basepoint $t_0 \in \mathbb{P}^1(\mathbb{C}) \setminus \underline{t}$.

Another perspective: a dominant finite morphism from a smooth curve Y onto $\mathbb{P}^1_{\mathbb{C}}$, étale outside \underline{t} + an action of G, free/transitive on every unramified fiber.

 Conf_n : configuration space for *n* (distinct, unordered) points in $\mathbb{P}^1(\mathbb{C})$.

Definition

A *G*-cover branched at $\underline{t} \in \text{Conf}_n$ is an unramified cover p of $\mathbb{P}^1(\mathbb{C}) \setminus \underline{t}$, equipped with a morphism $\alpha : G \to \text{Aut}(p)$ which induces a free transitive action on every fiber. A marked *G*-cover also comes with a marked point above a basepoint $t_0 \in \mathbb{P}^1(\mathbb{C}) \setminus \underline{t}$.

Another perspective: a dominant finite morphism from a smooth curve Y onto $\mathbb{P}^1_{\mathbb{C}}$, étale outside \underline{t} + an action of G, free/transitive on every unramified fiber. If the curve Y is irreducible, its function field is a Galois extension of $\mathbb{C}(t)$ of group G:

$$\{$$
Irreducible *G*-covers $\} \simeq \begin{cases} Galois extensions \\ F \mid \mathbb{C}(t) \text{ of group } G \end{cases}$

Fields of definition

A G-cover Y is defined over Q if there is a G-cover Y' → P¹_Q such that the following diagram is cartesian:

i.e. the cover can be defined by polynomial equations with rational coefficients.

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

Fields of definition

A G-cover Y is defined over Q if there is a G-cover Y' → P¹_Q such that the following diagram is cartesian:

i.e. the cover can be defined by polynomial equations with rational coefficients.

• Main takeaway: G-covers defined over Q (with Y' irreducible) correspond to regular Galois extensions of Q(t) of group G.

Fields of definition

A G-cover Y is defined over Q if there is a G-cover Y' → P¹_Q such that the following diagram is cartesian:

i.e. the cover can be defined by polynomial equations with rational coefficients.

• Main takeaway: G-covers defined over \mathbb{Q} (with Y' irreducible) correspond to regular Galois extensions of $\mathbb{Q}(t)$ of group G.

Question (Geometrical reformulation of RIGP for G)

Is there a G-cover defined over \mathbb{Q} ?

• The Hurwitz space is itself a cover of $Conf_n$,

given by the "branch points" map.

• The Hurwitz space is itself a cover of $Conf_n$,

 $\operatorname{Hur}^*(G, n)$

Conf

- given by the "branch points" map.
- Lifting a path in $Conf_n$

 $\Leftrightarrow \text{ unique deformation of a } \textit{G-cover as the branch points move around}$

• The Hurwitz space is itself a cover of $Conf_n$,

 $\operatorname{Hur}^*(G, n)$

Conf

- given by the "branch points" map.
- Lifting a path in $Conf_n$

 $\Leftrightarrow \text{ unique deformation of a } \textit{G-cover as the branch points move around}$

Thompson '84 : IGP for the Monster group (rigidity methods).
 Later reinterpreted as the fact that there is an irreducible component X of Hur(M, 3) such that X → Conf₃ is an isomorphism.

Hurwitz spaces and RIGP

Moduli space property: if S is a \mathbb{Q} -scheme, then there is a (natural) bijection between:

• Morphisms $S \to \operatorname{Hur}^*(G, n)$

• Marked G-covers
$$Y \to \mathbb{P}^1 \underset{\text{Spec } \mathbb{O}}{\times} S$$

Hurwitz spaces and RIGP

Moduli space property: if S is a \mathbb{Q} -scheme, then there is a (natural) bijection between:

- Morphisms $S \to \operatorname{Hur}^*(G, n)$
- Marked G-covers $Y \to \mathbb{P}^1 \xrightarrow{\times} S$

Take $S = \operatorname{Spec} \mathbb{Q}$:

$$\{\mathbb{Q} ext{-points of } \operatorname{Hur}^*(G,n)\} \simeq egin{cases} \operatorname{marked} & G ext{-covers} \ \operatorname{defined} & \operatorname{over} \ \mathbb{Q} \ \operatorname{with} & n \ \operatorname{branch} & \operatorname{points} \end{pmatrix}$$

Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G, n) for *non-marked G*-covers is a *coarse* moduli space. When *G* is centerfree, it is a fine moduli space. In this case its \mathbb{Q} -points indeed correspond to non-marked covers defined over \mathbb{Q} .

Hurwitz spaces and RIGP

Moduli space property: if S is a \mathbb{Q} -scheme, then there is a (natural) bijection between:

- Morphisms $S \to \operatorname{Hur}^*(G, n)$
- Marked G-covers $Y \to \mathbb{P}^1 \underset{\text{Spec } \mathbb{O}}{\times} S$

Take $S = \operatorname{Spec} \mathbb{Q}$:

$$\{\mathbb{Q} ext{-points of } \operatorname{Hur}^*(G,n)\}\simeq egin{cases} \operatorname{marked} & G ext{-covers} \ \operatorname{defined} & \operatorname{over} \ \mathbb{Q} \ \operatorname{with} & n \ \operatorname{branch} & \operatorname{points} \end{pmatrix}$$

Remark: issues due to the fact that in general the Hurwitz moduli scheme Hur(G, n) for *non-marked G*-covers is a *coarse* moduli space. When *G* is centerfree, it is a fine moduli space. In this case its \mathbb{Q} -points indeed correspond to non-marked covers defined over \mathbb{Q} . The regular inverse Galois problem for *G* becomes a problem of diophantine geometry:

Question

Does the Hurwitz scheme Hur(G, n) have rational points, for some $n \in \mathbb{N}$?

Ellenberg, Venkatesh, Westerland, Tran '16-'17, their strategy:

- Homological information about Hurwitz spaces (combinatorial methods)
- \rightsquigarrow Count \mathbb{F}_q -points using Grothendieck-Lefschetz methods (i.e. extensions of $\mathbb{F}_q(t)$)
- \rightsquigarrow Progress on Malle's and Cohen-Lenstra's conjectures over $\mathbb{F}_q(t)$.

Ellenberg, Venkatesh, Westerland, Tran '16-'17, their strategy:

- Homological information about Hurwitz spaces (combinatorial methods)
- \rightsquigarrow Count \mathbb{F}_q -points using Grothendieck-Lefschetz methods (i.e. extensions of $\mathbb{F}_q(t)$)
- \rightsquigarrow Progress on Malle's and Cohen-Lenstra's conjectures over $\mathbb{F}_q(t)$.

Two reasons to study irreducible components of Hurwitz schemes:

- Homology of Hurwitz spaces (including H_0) is central in the strategy above
- \bullet A $\mathbb Q\text{-point}$ has to belong to a component defined over $\mathbb Q$

Part 2: Rings of components of Hurwitz schemes and their geometry

Gluing and patching

Gluing operation on marked G-covers:

$$\begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_1 \\ n \text{ branch points} \end{pmatrix} \times \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_2 \\ n' \text{ branch points} \end{pmatrix} = \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } \langle H_1, H_2 \rangle \\ n+n' \text{ branch points} \end{pmatrix}$$

Glue two projective lines together

 \Rightarrow get a single projective line with more branch points!

Béranger Seguin

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

Gluing operation on marked G-covers:

$$\begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_1 \\ n \text{ branch points} \end{pmatrix} \times \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_2 \\ n' \text{ branch points} \end{pmatrix} = \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } \langle H_1, H_2 \rangle \\ n+n' \text{ branch points} \end{pmatrix}$$

The connected component of the glued cover only depends on the connected components: \rightsquigarrow multiply components of $\bigsqcup_n \operatorname{Hur}^*(G, n)$.

Gluing operation on marked G-covers:

$$\begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_1 \\ n \text{ branch points} \end{pmatrix} \times \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_2 \\ n' \text{ branch points} \end{pmatrix} = \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } \langle H_1, H_2 \rangle \\ n+n' \text{ branch points} \end{pmatrix}$$

The connected component of the glued cover only depends on the connected components: \rightarrow **multiply components** of $\bigsqcup_n \operatorname{Hur}^*(G, n)$. *Remark:* this is well defined for (components of) *marked G*-covers, but the interesting arithmetic questions are for (components of) *non-marked G*-covers. Gluing operation on marked G-covers:

$$\begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_1 \\ n \text{ branch points} \end{pmatrix} \times \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } H_2 \\ n' \text{ branch points} \end{pmatrix} = \begin{pmatrix} G\text{-cover} \\ \text{monodromy group } \langle H_1, H_2 \rangle \\ n+n' \text{ branch points} \end{pmatrix}$$

The connected component of the glued cover only depends on the connected components: \rightarrow **multiply components** of $\bigsqcup_n \operatorname{Hur}^*(G, n)$. *Remark:* this is well defined for (components of) marked G-covers, but the interesting arithmetic questions are for (components of) non-marked G-covers. **Patching theory (Harbater):** A similar operation can be done with G-covers defined over K when K is a *complete* valued field ($\mathbb{C}, K((t)), \mathbb{Q}_p, \ldots$). k a field of characteristic zero.

Definition (Ring of components)

The ring of components R(G) is the graded k-algebra $\bigoplus_n H_0(\operatorname{Hur}^*(G, n), k)$ equipped with the multiplication induced by gluing.

k a field of characteristic zero.

Definition (Ring of components)

The ring of components R(G) is the graded k-algebra $\bigoplus_n H_0(\operatorname{Hur}^*(G, n), k)$ equipped with the multiplication induced by gluing.

Introduced by EVW in the case of components of covers of the affine line.

k a field of characteristic zero.

Definition (Ring of components)

The ring of components R(G) is the graded k-algebra $\bigoplus_n H_0(\operatorname{Hur}^*(G, n), k)$ equipped with the multiplication induced by gluing.

Introduced by EVW in the case of components of covers of the affine line. For \mathbb{P}^1 :

Theorem (S. 22)

R(G) is a commutative graded k-algebra of finite type.

 \rightsquigarrow I can define the scheme $\operatorname{Proj} R(G)$ (variant of Spec for graded rings) and study it

- c = conjugacy class of G;
- R(G, c) = ring of components of marked G-covers with monodromy elements $\in c$

- c = conjugacy class of G;
- R(G, c) = ring of components of marked G-covers with monodromy elements $\in c$
- **Splitting:** if $H \subseteq G$, then $c \cap H$ may contain several classes. Let $s_H + 1$ be their count:

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

- c = conjugacy class of G;
- R(G, c) = ring of components of marked G-covers with monodromy elements $\in c$
- **Splitting:** if $H \subseteq G$, then $c \cap H$ may contain several classes. Let $s_H + 1$ be their count:

• EVW prove homological stability when $s_H = 0 \rightsquigarrow$ how does it generalize?

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

Geometry of rings of components

Theorem (S. 22)

The Krull dimension d of $\operatorname{Proj} R(G, c)$ equals $\max_{H \subseteq G} s_H$, and the count of components with n branch points grows like n^d .

I have a more precise version, dealing with each subgroup H.

Theorem (S. 22)

The Krull dimension d of $\operatorname{Proj} R(G, c)$ equals $\max_{H \subseteq G} s_H$, and the count of components with n branch points grows like n^d .

I have a more precise version, dealing with each subgroup H. I also have an expression of the leading coefficient:

Theorem (S. 22)

The count of components with n branch points and monodromy group H has an average order given by:

$$\frac{H_2(H,c\cap H)|}{|H^{ab}|s_H!}n^{s_H}$$

for an explicit quotient $H_2(H, c \cap H)$ of the second group homology of H.

- $G = \mathfrak{S}_d$ and c the conjugacy class of transpositions.
 - The ring of components admits the presentation:

$$R(\mathfrak{S}_d, c) = \frac{k[(X_{ij})_{1 \le i < j \le d}]}{(X_{ij}X_{jk} = X_{ik}X_{jk} = X_{ij}X_{ik})_{1 \le i < j < k \le d}}$$

- $G = \mathfrak{S}_d$ and c the conjugacy class of transpositions.
 - The ring of components admits the presentation:

$$R(\mathfrak{S}_d,c) = \frac{k[(X_{ij})_{1 \leq i < j \leq d}]}{(X_{ij}X_{jk} = X_{ik}X_{jk} = X_{ij}X_{ik})_{1 \leq i < j < k \leq d}}$$

- Description of $\operatorname{Proj} R(\mathfrak{S}_d, c)(k)$ as a subvariety of $\mathbb{P}^{\frac{d(d-1)}{2}-1}(k)$ of dimension $\lfloor d/2 \rfloor 1$:
 - one vertex e_A for each subset $A \subseteq \{1, \ldots, d\}$ of size ≥ 2
 - the line (e_A, e_B) when A, B are disjoint
 - the plane (e_A, e_B, e_C) when A, B, C are disjoint
 - etc.

 $\stackrel{\sim}{\longrightarrow} \mathfrak{S}_A \\ \stackrel{\sim}{\longrightarrow} \mathfrak{S}_A \times \mathfrak{S}_B$

 $\rightsquigarrow \mathfrak{S}_A \times \mathfrak{S}_B \times \mathfrak{S}_C$

Example of \mathfrak{S}_3

dimension 0 ~> situation of EVW (homological stability)

Example of \mathfrak{S}_4

dimension $1 \rightsquigarrow$ no homological stability (linear growth) (schematic drawing: the actual drawing is in 5D...)

Example of \mathfrak{S}_6 ?

To observe dimension 2, the smallest example is d = 6. Problem: many irreducible components to draw (77 vertices, 160 lines, 15 planes) en 14D. I draw only the part of the Proj corresponding to subsets of $\{1, 2, 3, 4, 5, 6\}$ of size 2, i.e. the 15 planes, represented as triangles:

Part 3: Fields of definition of components of Hurwitz schemes

Geometric methods for inverse Galois theory ガロアの逆問題における幾何学的方法

How does the product of components behave with the fields of definition? (*field of definition* = of the underlying component of non-marked covers) If x, y are components defined over \mathbb{Q} , is xy also defined over \mathbb{Q} ?

How does the product of components behave with the fields of definition? (*field of definition* = of the underlying component of non-marked covers) If x, y are components defined over \mathbb{Q} , is xy also defined over \mathbb{Q} ? Probably not true in general. A partial answer:

Theorem (Cau 12)

If x, y are components defined over \mathbb{Q} ,

$$\left\{x^g y^{g'} \, \Big| \, g,g' \in G
ight\}$$
 is stable under the action of $\mathrm{Gal}\left(\overline{\mathbb{Q}} \mid \mathbb{Q}
ight)$

If this set is a singleton $\Rightarrow xy$ is defined over \mathbb{Q} .

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , denote their respective monodromy groups by H_1, H_2 . If $H_1H_2 = \langle H_1, H_2 \rangle$ then for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$:

 $\sigma.(xy) = (\sigma.x)(\sigma.y).$

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , denote their respective monodromy groups by H_1, H_2 . If $H_1H_2 = \langle H_1, H_2 \rangle$ then for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$:

$$\sigma.(xy) = (\sigma.x)(\sigma.y).$$

Corollary

If x, y are components defined over \mathbb{Q} and their monodromy groups H_1, H_2 satisfy $H_1H_2 = G$, then xy is defined over \mathbb{Q} .

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , denote their respective monodromy groups by H_1, H_2 . If $H_1H_2 = \langle H_1, H_2 \rangle$ then for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$:

$$\sigma.(xy) = (\sigma.x)(\sigma.y).$$

Corollary

If x, y are components defined over \mathbb{Q} and their monodromy groups H_1, H_2 satisfy $H_1H_2 = G$, then xy is defined over \mathbb{Q} .

Corollary

If x is a component defined over \mathbb{Q} and $n \ge 1$, then x^n is defined over \mathbb{Q} .

The lifting invariant is an invariant (introduced by EVW) with values in a group. It can be used to study fields of definition. An example:

Theorem (S. 23)

For a constant M depending only on the group G, if x, y are components defined over \mathbb{Q} and xy has G as its monodromy group, then $(xy)^M$ is defined over \mathbb{Q} .

The lifting invariant is an invariant (introduced by EVW) with values in a group. It can be used to study fields of definition. An example:

Theorem (S. 23)

For a constant M depending only on the group G, if x, y are components defined over \mathbb{Q} and xy has G as its monodromy group, then $(xy)^M$ is defined over \mathbb{Q} .

Ingredients for the proof:

- The lifting invariant of $x^{\gamma}y^{\gamma'}$ is equal to that of xy (not true for covers of \mathbb{A}^1 !)
- If every conjugacy class of G is the conjugacy class of either 0 or $\geq M$ local monodromy elements, then the component is entirely determined by its lifting invariant (generalization of the Conway-Parker theorem)
- This implies $x^{\gamma}y^{\gamma'} = xy$. Conclude by Cau's theorem.

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , there are $\gamma, \gamma' \in G$ such that $x^{\gamma}y^{\gamma'}$ is defined over \mathbb{Q} .

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , there are $\gamma, \gamma' \in G$ such that $x^{\gamma}y^{\gamma'}$ is defined over \mathbb{Q} .

Sketch of proof.

 Using Hilbert's irreducibility theorem, construct an infinite sequence of fields K₁, K₂,..., linearly disjoint over Q, such that there are covers f_n ∈ x, g_n ∈ y defined over K_n.

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , there are $\gamma, \gamma' \in G$ such that $x^{\gamma}y^{\gamma'}$ is defined over \mathbb{Q} .

Sketch of proof.

- Using Hilbert's irreducibility theorem, construct an infinite sequence of fields K₁, K₂,..., linearly disjoint over Q, such that there are covers f_n ∈ x, g_n ∈ y defined over K_n.
- See f_n, g_n as covers defined over the complete field $K_n((t))$ and glue them together into a cover h_n defined over $K_n((t))$, which is "in" the component $x^{\gamma_n}y^{\gamma'_n}$ for some $\gamma_n, \gamma'_n \in G$.

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , there are $\gamma, \gamma' \in G$ such that $x^{\gamma}y^{\gamma'}$ is defined over \mathbb{Q} .

Sketch of proof.

- Using Hilbert's irreducibility theorem, construct an infinite sequence of fields K₁, K₂,..., linearly disjoint over Q, such that there are covers f_n ∈ x, g_n ∈ y defined over K_n.
- See f_n, g_n as covers defined over the complete field $K_n((t))$ and glue them together into a cover h_n defined over $K_n((t))$, which is "in" the component $x^{\gamma_n}y^{\gamma'_n}$ for some $\gamma_n, \gamma'_n \in G$.
- Since there are finitely many components of the form $x^{\gamma}y^{\gamma'}$, at least two of the covers $h_n, h_{n'}$ belong to the same component $x^{\gamma}y^{\gamma'}$.

Another theorem, proved using Harbater's patching method:

Theorem (S. 23)

If x, y are components defined over \mathbb{Q} , there are $\gamma, \gamma' \in G$ such that $x^{\gamma}y^{\gamma'}$ is defined over \mathbb{Q} .

Sketch of proof.

- Using Hilbert's irreducibility theorem, construct an infinite sequence of fields K₁, K₂,..., linearly disjoint over Q, such that there are covers f_n ∈ x, g_n ∈ y defined over K_n.
- See f_n, g_n as covers defined over the complete field $K_n((t))$ and glue them together into a cover h_n defined over $K_n((t))$, which is "in" the component $x^{\gamma_n}y^{\gamma'_n}$ for some $\gamma_n, \gamma'_n \in G$.
- Since there are finitely many components of the form $x^{\gamma}y^{\gamma'}$, at least two of the covers $h_n, h_{n'}$ belong to the same component $x^{\gamma}y^{\gamma'}$.
- The field of definition of $x^{\gamma}y^{\gamma'}$ is included in:

 $\overline{\mathbb{Q}} \cap K_n((t)) \cap K_{n'}((t)) = \mathbb{Q}.$

My preprint: "The Geometry of Rings of Components of Hurwitz Spaces". **arXiv:2210.12793** Forthcoming: "Fields of Definition of Components of Hurwitz Spaces".