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July 6th, 2023



Part I.

Motivation and context



Galois theory and its historical role

History
Classical problem: study of (polynomial) equations (e.g. trisection)
Early 19th century: breakthroughs by Abel, Galois, ...

Key objects introduced by Galois:

– field extensions: different number systems needed to solve various equations

– Galois groups:
measures the symmetries of an equation
more complicated Galois group ≈ harder to solve

No general solution for equations of degree ≥ 5
⇝ Galois shows that some ”complicated enough” groups are Galois groups



Inverse/counting problems in Galois theory

Natural question:
Is every finite group the Galois group of a polynomial with rational coefficients?

Inverse Galois Problem (IGP)
Is every finite group isomorphic to the Galois group of a Galois extension of Q?

F

Q

G

Studied by Hilbert (≈ 1892), Noether (≈ 1918), Shafarevitch (≈ 1954).



The function field case

The regular inverse Galois problem (RIGP)
Is every finite group isomorphic to the Galois group of a Galois
extension F | Q(T) with F ∩Q = Q?

Hilbert’s irreducibility theorem: For a given group G, RIGP ⇒ IGP

F Ft

Q(T) Q

G G∃t∈Q

Function fields: extensions are understood geometrically as covers of the projective line
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Covers and field extensions of function fields

A series of equivalences:{
extensions of K(T)
with Galois group G

}
≃

{
ramified connected covers of P1

K
with monodromy group G

}

If K is algebraically closed of characteristic 0, further equivalences:
G-covers of P1

K
unramified outside

{t1, ... , tn}

 ≃

{
topological G-covers of

P1(C) \ {t1, ... , tn}

}
≃


tuples (g1, ... , gn) ∈ Gn

where g1 · · · gn = 1
(modulo conjugacy)


Here a G-cover is a ramified Galois cover (algebraic or topological) with an action of G,
such that G acts freely/transitively on the (geometric) points of any unramified fiber.

The regular inverse problem over K
Is every finite group the automorphism group of a connected cover of P1 over K?
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Fields of definition of covers

Over C and Q ⇝ Yes by topological arguments!

Idea
To find G-covers of P1

Q, find G-covers of P1
Q which are invariant

under the Galois action of GQ = Gal(Q | Q)

Works when G is centerless (e.g. G is simple noncyclic)

Example: rigidity
Find properties invariant under the Galois action and prove that they uniquely
characterize a given cover (e.g. conjugacy classes of monodromy elements)

Thompson (1984): the Monster group is a Galois group over Q



Fields of definition of covers

Over C and Q ⇝ Yes by topological arguments!

Idea
To find G-covers of P1

Q, find G-covers of P1
Q which are invariant

under the Galois action of GQ = Gal(Q | Q)

Works when G is centerless (e.g. G is simple noncyclic)

Example: rigidity
Find properties invariant under the Galois action and prove that they uniquely
characterize a given cover (e.g. conjugacy classes of monodromy elements)

Thompson (1984): the Monster group is a Galois group over Q



Covers: a language between geometry and arithmetic

Geometry Arithmetic

Ramified

algebraic

covers of P1
Q

Extensions of

Q(T )

Ramified

algebraic

covers of P1
Q

Extensions of

Q(T )

Topological covers

of the punctured

sphere

Combinatorics

Tuples of elements of a group

Dessins d’enfants

Extensions

of Q

• Inverse Galois problem:

Is every finite group the Galois group of an
extension of Q?

• Malle conjecture:

Count extensions with a given Galois group
by discriminant.



Hurwitz moduli spaces

A further geometrization of the problem: Hurwitz spaces

– moduli spaces for G-covers of P1 ramified at n points: each point is a G-cover
– itself a cover of the space of configurations Confn of n points of P1(C).
– variants:

Hurwitz space of marked G-covers
subspace of connected G-covers, or covers of monodromy group H
possibility to fix the monodromy classes

The Hurwitz space is the analytification (C-points) of a scheme over Z[ 1
|G| ]:

Q-points of
the Hurwitz scheme

≈ G-covers
defined over Q

≈ extensions of Q(T)
with Galois group G

⇝
extensions of Q

with Galois group G

Turns RIGP into a Diophantine problem: we look for rational points on Hurwitz spaces
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Part II.
Connected components of Hurwitz

spaces and their asymptotics



Why count components?

G a group, c a conjugacy class which generates G.

Since 2009, Ellenberg, Tran, Venkatesh, Westerland:

Study extensions
of Fq(T)

⇐ Count Fq-points
of Hurwitz spaces

⇐ Homology of Hurwitz spaces
+ Grothendieck-Lefschetz trace formula

EVW 2012: as the number of branch points grows, the homology is eventually stable
when: for all subgroups H ⊆ G, if c ∩ H is nonempty, then it is a conjugacy class of H.

Count components (i.e. H0) in the general case:

c

c ∩ H = d1 ⊔ d2 ⊔ ... ⊔ dΩ(H)+1

Ω(H) is the splitting number of H. What happens if Ω(H) > 0?
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The gluing operation

Gluing
Two marked G-covers can be glued (over C or Q)
# of branch points n n′ → n+ n′

Monodromy group H H′ → ⟨H,H′⟩
Monodromy elements (g1, ... , gn) (g′1 , ... , g

′
n′) → (g1, ... , gn, g′1 , ... , g

′
n′)

⇝ gluing operation at the level of components

⇝ a monoid of components (and its associated monoid ring over a field k)

Count components of Hurwitz spaces = study the Hilbert function of that ring.
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General philosophy: asymptotical behaviour

Why is this easier?

Guiding principle
Many branch points⇝ the monoid of components behaves like a group.

We can reason as if components had ”inverses”: very useful for counting.

EVW-Wood describe the corresponding group in terms of group homology.



Counting results

Theorem 4.3.1
The count of components of the Hurwitz space of marked G-covers of the
affine line A1(C), branched at n points, with monodromy elements belonging to
c and monodromy group H, is asymptotically equivalent to:

|H| |H2(H, c)|
|Hab|Ω(H)!

nΩ(H).

If the affine line is replaced by the projective line P1(C), an average order of
this count is given by:

|H2(H, c)|
|Hab|Ω(H)!

nΩ(H).
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Overview of the argument

Step 1
Count the number of ways that the conjugacy classes of H included in c ∩ H can
be attributed to n different branch points. Asymptotically:

nΩ(H)

Ω(H)!

Step 2
Show that for most choices, there are exactly:

|H| |H2(H, c)|
|Hab|

components (in the affine case).
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The case of symmetric groups

If G = Sd , c = {transpositions} (classical case of Lüroth/Clebsch/Hurwitz):

– A presentation of the ring of components (Theorem 6.1.1):

RP1(C)(Sd , c) ≃
k[(Xij)1≤i<j≤d]

(XijXjk − XikXjk , XijXjk − XijXik)1≤i<j<k≤d
,

– The Hilbert function is a polynomial of degree d′ = ⌊d/2⌋ and leading term
d!

2d′(d′)!(d′ − 1)!
nd

′−1 if d is even(
1 +

d′

3

)
d!

2d′(d′)!(d′ − 1)!
nd

′−1 if d is odd

– A ”visual” proof of irreducibility using multigraphs:

1 ... 1 ...

2 n 2 n

Braids are interpreted as operations on these graphs (7-Γ-V -equivalence).
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– A presentation of the ring of components (Theorem 6.1.1)
– The Hilbert function is a polynomial of degree d′ = ⌊d/2⌋ and leading term

d!
2d′(d′)!(d′ − 1)!

nd
′−1 if d is even(

1 +
d′

3

)
d!

2d′(d′)!(d′ − 1)!
nd

′−1 if d is odd

– A ”visual” proof of irreducibility using multigraphs:

1 ... 1 ...

2 n 2 n

Braids are interpreted as operations on these graphs (7-Γ-V -equivalence).



The algebraic geometry of the ring of components 1/2

The ring of components for P1(C) is commutative⇝ geometry

Geometrical takeaways
– The spectrum is stratified in a family of subschemes γ(H) for subgroups H

– The Krull dimension of γ(H) is Ω(H) + 1.
⇝ the Krull dimension of the ring of components is the maximal splitting
number +1

– In specific situations (e.g. symmetric groups) we can describe the strata
(and hence the spectrum) fully

⇝ An invitation to the study of the geometry of the homology of Hurwitz spaces.
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The algebraic geometry of the ring of components 2/2

Unsolved questions
– Which γ(H′) intersect the closure of γ(H)? (necessarily H′ ⊆ H)

– How does the spectrum compare to that of the group ring?

– What can be done with the (braided-commutative) ring for covers of
A1(C)? with higher homology?

Drawings for symmetric groups (d = 4, 6):

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4}

{3, 4} {2, 4} {2, 3}



Part III.

Fields of definition of connected
components of Hurwitz spaces



Fields of definition

A rational point of a Hurwitz space has to lie in a component defined over Q.

⇝ Weak form of RIGP: Find components defined over Q.

A goal
Understand/count components defined over Q.

Previous work: Dèbes-Emsalem, Cau.



Fields of definition and concatenation

Question
Are the components obtained by gluing components defined over Q also
defined over Q?

Gluing is a transcendental operation... Too good to be true?

An important starting point:

Theorem (Cau)
If x and y are components defined over Q, the set of ”all possible gluings”:

{xγyγ′ | (γ, γ′) ∈ G2}

is globally defined over Q. If this is a singleton, xy is defined over Q.
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A rigidity criterion for rationality

Theorem 8.1.2, i) and ii)
Let x, y be components defined over K . Denote by H1,H2 their respective
monodromy groups, and let H = ⟨H1,H2⟩. Then:

i) If H1H2 = H, then xy is defined over K .

ii) If every conjugacy class of H which appears in xy appears at least M times
(for some integer M depending only on the group G), then xy is defined
over K .

Another result: the GQ-action on components is determined by its action of
components with few branch points (Prop 8.2.8). Unsurprising in the light of Belyi’s
theorem/faithfulness of the Galois action on dessins d’enfants (covers with three
branch points). But here we have fixed group/conjugacy classes.



Patching components over a number field

A different result that does not follow from a rigidity principle/Cau’s theorem:

Theorem 8.1.2, iii)
Let x, y be components defined over K . Denote by H1,H2 their respective
monodromy groups, and let H = ⟨H1,H2⟩. Then there is an element γ ∈ H such
that H =

〈
H1,H

γ
2

〉
and such that xyγ is defined over K .

Sketch of proof.

– Construct a sequence K1, K2, ... of linearly disjoint extensions of K such that there
are marked covers fi , gi defined over Ki in the components x, y.

– Patch fi , gi over the complete valued field Ki((X)). A result of Cau ensures that the
patched cover lies in a component ci of the form xγyγ′ .

– There are finitely many xγyγ′
⇝ there is some i ̸= i′ such that ci = ci′ .

It is defined over Q ∩ Ki((X)) ∩ Ki′((X)) = K .
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Applications

Proposition 8.4.8
If ⟨g1, ... , gn⟩ = G, there is a component def. /Q of connected G-covers with:

|{i | ord(gi) = 2}|+
n∑
i=1

φ(ord(gi))

branch points.

– Mathieu group M23: generated by two order 3 elements⇝ 4 branch points.
Cau’s criterion gave 15 branch points.

– PSL2(16)⋊ Z/2Z: generated by two order 6 elements⇝ 4 branch points.


