

Geometry and arithmetic of components of Hurwitz spaces

Béranger Seguin Laboratoire Paul Painlevé

July 6th, 2023

Part I.

Motivation and context

Galois theory and its historical role

History

Classical problem: study of (polynomial) equations (e.g. trisection) **Early 19th century:** breakthroughs by Abel, Galois, ...

Key objects introduced by Galois:

- field extensions: different number systems needed to solve various equations
- Galois groups:

measures the symmetries of an equation more complicated Galois group \approx harder to solve

No general solution for equations of degree ≥ 5

 \rightsquigarrow Galois shows that some "complicated enough" groups are Galois groups

Natural question:

Is every finite group the Galois group of a polynomial with rational coefficients?

Inverse Galois Problem (IGP)

Is every finite group isomorphic to the Galois group of a Galois extension of $\mathbb{Q}?$

FG

Studied by Hilbert (\approx 1892), Noether (\approx 1918), Shafarevitch (\approx 1954).

The regular inverse Galois problem (RIGP)

Is every finite group isomorphic to the Galois group of a Galois extension $F \mid \mathbb{Q}(T)$ with $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$?

Hilbert's irreducibility theorem: For a given group G, RIGP \Rightarrow IGP

$$\begin{array}{c} F & F_t \\ G & & \\ \hline & \exists t \in \mathbb{Q} \end{array} \end{array} \begin{array}{c} F_t \\ G \\ & \\ \hline & \\ \end{bmatrix}$$

The regular inverse Galois problem (RIGP)

Is every finite group isomorphic to the Galois group of a Galois extension $F \mid \mathbb{Q}(T)$ with $F \cap \overline{\mathbb{Q}} = \mathbb{Q}$?

Hilbert's irreducibility theorem: For a given group G, RIGP \Rightarrow IGP

$$\begin{array}{c} F & F_t \\ G & & & & \\ \hline G & & & \\ \hline \end{array} \\ \mathbb{Q}(T) & & \mathbb{Q} \end{array}$$

Function fields: extensions are understood geometrically as covers of the projective line

A series of equivalences:

$$\begin{cases} \text{extensions of } \mathcal{K}(\mathcal{T}) \\ \text{with Galois group } G \end{cases} \simeq \begin{cases} \text{ramified connected covers of } \mathbb{P}^1_{\mathcal{K}} \\ \text{with monodromy group } G \end{cases}$$

A series of equivalences:

 $\begin{cases} \text{extensions of } K(T) \\ \text{with Galois group } G \end{cases} \simeq \begin{cases} \text{ramified connected covers of } \mathbb{P}^1_K \\ \text{with monodromy group } G \end{cases}$

If K is algebraically closed of characteristic 0, further equivalences:

$$\begin{pmatrix} G\text{-covers of } \mathbb{P}^1_{\mathcal{K}} \\ \text{unramified outside} \\ \{t_1, \dots, t_n\} \end{pmatrix} \simeq \begin{cases} \text{topological } G\text{-covers of} \\ \mathbb{P}^1(\mathbb{C}) \setminus \{t_1, \dots, t_n\} \end{cases} \geq \simeq \begin{cases} \text{tuples } (g_1, \dots, g_n) \in G^n \\ \text{where } g_1 \cdots g_n = 1 \\ (\text{modulo conjugacy}) \end{cases}$$

Here a G-cover is a ramified Galois cover (algebraic or topological) with an action of G, such that G acts freely/transitively on the (geometric) points of any unramified fiber.

A series of equivalences:

 $\begin{cases} \text{extensions of } \mathcal{K}(\mathcal{T}) \\ \text{with Galois group } G \end{cases} \simeq \begin{cases} \text{ramified connected covers of } \mathbb{P}^1_{\mathcal{K}} \\ \text{with monodromy group } G \end{cases}$

If K is algebraically closed of characteristic 0, further equivalences:

$$\begin{cases} G\text{-covers of } \mathbb{P}^1_K \\ \text{unramified outside} \\ \{t_1, \dots, t_n\} \end{cases} \simeq \begin{cases} \text{topological } G\text{-covers of} \\ \mathbb{P}^1(\mathbb{C}) \setminus \{t_1, \dots, t_n\} \end{cases} \geq \simeq \begin{cases} \text{tuples } (g_1, \dots, g_n) \in G^n \\ \text{where } g_1 \cdots g_n = 1 \\ (\text{modulo conjugacy}) \end{cases}$$

Here a G-cover is a ramified Galois cover (algebraic or topological) with an action of G, such that G acts freely/transitively on the (geometric) points of any unramified fiber.

The regular inverse problem over K

Is every finite group the automorphism group of a connected cover of \mathbb{P}^1 over *K*?

Fields of definition of covers

Idea

Over \mathbb{C} and $\overline{\mathbb{Q}} \rightsquigarrow$ Yes by topological arguments!

To find *G*-covers of $\mathbb{P}^1_{\mathbb{Q}}$, find *G*-covers of $\mathbb{P}^1_{\overline{\mathbb{Q}}}$ which are invariant under the Galois action of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$

Works when *G* is centerless (e.g. *G* is simple noncyclic)

Fields of definition of covers

Idea

Over \mathbb{C} and $\overline{\mathbb{Q}} \rightsquigarrow$ Yes by topological arguments!

To find *G*-covers of $\mathbb{P}^1_{\mathbb{Q}}$, find *G*-covers of $\mathbb{P}^1_{\overline{\mathbb{Q}}}$ which are invariant under the Galois action of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$

Works when G is centerless (e.g. G is simple noncyclic)

Example: rigidity

Find properties invariant under the Galois action and prove that they uniquely characterize a given cover (e.g. conjugacy classes of monodromy elements)

Thompson (1984): the Monster group is a Galois group over \mathbb{Q}

Covers: a language between geometry and arithmetic

Hurwitz moduli spaces

A further geometrization of the problem: Hurwitz spaces

- moduli spaces for *G*-covers of \mathbb{P}^1 ramified at *n* points: each point is a *G*-cover
- itself a cover of the space of configurations Conf_n of *n* points of $\mathbb{P}^1(\mathbb{C})$.
- variants:

Hurwitz space of **marked** *G*-covers subspace of **connected** *G*-covers, or covers of monodromy group *H* possibility to **fix the monodromy classes** A further geometrization of the problem: Hurwitz spaces

- moduli spaces for *G*-covers of \mathbb{P}^1 ramified at *n* points: each point is a *G*-cover
- itself a cover of the space of configurations Conf_n of *n* points of $\mathbb{P}^1(\mathbb{C})$.
- variants:

Hurwitz space of **marked** *G*-covers subspace of **connected** *G*-covers, or covers of monodromy group *H* possibility to **fix the monodromy classes**

The Hurwitz space is the analytification (\mathbb{C} -points) of a scheme over $\mathbb{Z}[\frac{1}{|G|}]$:

 \mathbb{Q} -points of $\approx G$ -covers extensions of $\mathbb{Q}(T) \longrightarrow G$ extensions of \mathbb{Q} the Hurwitz scheme defined over $\mathbb{Q} \approx W$ with Galois group $G \longrightarrow G$ with Galois group GTurns RIGP into a **Diophantine problem**: we look for rational points on Hurwitz spaces

Part II. Connected components of Hurwitz spaces and their asymptotics

G a group, *c* a conjugacy class which generates *G*.

Since 2009, Ellenberg, Tran, Venkatesh, Westerland:

 $\begin{array}{l} \text{Study extensions} \\ \text{of } \mathbb{F}_q(T) \end{array} \leftarrow \begin{array}{l} \text{Count } \mathbb{F}_q\text{-points} \\ \text{of Hurwitz spaces} \end{array} \leftarrow \begin{array}{l} \text{Homology of Hurwitz spaces} \\ + \text{Grothendieck-Lefschetz trace formula} \end{array}$

EVW 2012: as the number of branch points grows, the homology is eventually stable when: for all subgroups $H \subseteq G$, if $c \cap H$ is nonempty, then it is a conjugacy class of H.

G a group, *c* a conjugacy class which generates *G*.

Since 2009, Ellenberg, Tran, Venkatesh, Westerland:

 $\begin{array}{l} \text{Study extensions} \\ \text{of } \mathbb{F}_q(T) \end{array} \leftarrow \begin{array}{l} \text{Count } \mathbb{F}_q\text{-points} \\ \text{of Hurwitz spaces} \end{array} \leftarrow \begin{array}{l} \text{Homology of Hurwitz spaces} \\ + \text{Grothendieck-Lefschetz trace formula} \end{array}$

EVW 2012: as the number of branch points grows, the homology is eventually stable when: for all subgroups $H \subseteq G$, if $c \cap H$ is nonempty, then it is a conjugacy class of H.

Count components (i.e. H_0) in the general case:

 $\Omega(H)$ is the **splitting number** of *H*. What happens if $\Omega(H) > 0$?

Gluing

Two marked *G*-covers can be glued (over \mathbb{C} or $\overline{\mathbb{Q}}$)

# of branch points	n	n'	\rightarrow	n + n'
Monodromy group	Н	H'	\rightarrow	$\langle H, H' angle$
Monodromy elements	(g ₁ , , g _n)	$(g_1',\ldots,g_{n'}')$	\rightarrow	$(g_1, \dots, g_n, g'_1, \dots, g'_{n'})$

 \rightsquigarrow gluing operation at the level of components

Gluing

Two marked *G*-covers can be glued (over \mathbb{C} or $\overline{\mathbb{Q}}$)

# of branch points	n	n'	\rightarrow	n + n'
Monodromy group	Н	H'	\rightarrow	$\langle H, H' \rangle$
Monodromy elements	(g ₁ , , g _n)	$(g_1',\ldots,g_{n'}')$	\rightarrow	$(g_1, \dots, g_n, g'_1, \dots, g'_{n'})$

 \rightsquigarrow gluing operation at the level of components

 \rightsquigarrow a **monoid of components** (and its associated monoid ring over a field k)

Count components of Hurwitz spaces = study the Hilbert function of that ring.

Why is this easier?

Guiding principle

Many branch points ~>> the monoid of components behaves like a group.

We can reason as if components had "inverses": very useful for counting.

EVW-Wood describe the corresponding group in terms of group homology.

Theorem 4.3.1

The count of components of the Hurwitz space of **marked** *G*-covers of the **affine** line $\mathbb{A}^1(\mathbb{C})$, branched at *n* points, with monodromy elements belonging to *c* and monodromy group *H*, is asymptotically equivalent to:

 $\frac{|H| |H_2(H,c)|}{|H^{\rm ab}| \Omega(H)!} n^{\Omega(H)}.$

Theorem 4.3.1

The count of components of the Hurwitz space of **marked** *G*-covers of the **affine** line $\mathbb{A}^1(\mathbb{C})$, branched at *n* points, with monodromy elements belonging to *c* and monodromy group *H*, is asymptotically equivalent to:

 $\frac{|H| |H_2(H, c)|}{|H^{\mathrm{ab}}| \Omega(H)!} n^{\Omega(H)}.$

If the affine line is replaced by the **projective** line $\mathbb{P}^1(\mathbb{C})$, an average order of this count is given by:

 $\frac{|H_2(H,c)|}{|H^{\rm ab}|\,\Omega(H)!}n^{\Omega(H)}.$

Overview of the argument

Step 1

Count the number of ways that the conjugacy classes of H included in $c \cap H$ can be attributed to n different branch points. Asymptotically:

 $\frac{n^{\Omega(H)}}{\Omega(H)!}$

Overview of the argument

Step 2

Show that for most choices, there are exactly:

$$\frac{|H||H_2(H,c)|}{|H^{ab}|}$$

components (in the affine case).

The case of symmetric groups

If $G = \mathfrak{S}_d$, $c = \{\text{transpositions}\}$ (classical case of Lüroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1):

$$R_{\mathbb{P}^1(\mathbb{C})}(\mathfrak{S}_d,c) \simeq \frac{k[(X_{ij})_{1 \leq i < j \leq d}]}{(X_{ij}X_{jk} - X_{ik}X_{jk}, X_{ij}X_{jk} - X_{ij}X_{ik})_{1 \leq i < j < k \leq d}}$$

The case of symmetric groups

If $G = \mathfrak{S}_d$, $c = \{\text{transpositions}\}$ (classical case of Lüroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1)
- The Hilbert function is a polynomial of degree $d' = \lfloor d/2 \rfloor$ and leading term

$$\frac{d!}{2^{d'}(d')!(d'-1)!}n^{d'-1} \qquad \text{if } d \text{ is even}$$
$$\left(1+\frac{d'}{3}\right)\frac{d!}{2^{d'}(d')!(d'-1)!}n^{d'-1} \qquad \text{if } d \text{ is odd}$$

The case of symmetric groups

If $G = \mathfrak{S}_d$, $c = \{\text{transpositions}\}$ (classical case of Lüroth/Clebsch/Hurwitz):

- A presentation of the ring of components (Theorem 6.1.1)
- The Hilbert function is a polynomial of degree $d' = \lfloor d/2 \rfloor$ and leading term

$$\frac{d!}{2^{d'}(d')!(d'-1)!}n^{d'-1} \qquad \text{if } d \text{ is even}$$

$$\left(1+\frac{d'}{3}\right)\frac{d!}{2^{d'}(d')!(d'-1)!}n^{d'-1} \qquad \text{if } d \text{ is odd}$$

- A "visual" proof of irreducibility using multigraphs:

Braids are interpreted as operations on these graphs (7- Γ -V-equivalence).

The ring of components for $\mathbb{P}^1(\mathbb{C})$ is commutative \rightsquigarrow geometry

Geometrical takeaways

- The spectrum is stratified in a family of subschemes $\gamma(H)$ for subgroups H

 \rightsquigarrow An invitation to the study of the geometry of the homology of Hurwitz spaces.

The ring of components for $\mathbb{P}^1(\mathbb{C})$ is commutative \rightsquigarrow geometry

Geometrical takeaways

- The spectrum is stratified in a family of subschemes $\gamma(H)$ for subgroups H
- The Krull dimension of γ(H) is Ω(H) + 1.
 → the Krull dimension of the ring of components is the maximal splitting number +1

 \rightsquigarrow An invitation to the study of the geometry of the homology of Hurwitz spaces.

The ring of components for $\mathbb{P}^1(\mathbb{C})$ is commutative \rightsquigarrow geometry

Geometrical takeaways

- The spectrum is stratified in a family of subschemes $\gamma(H)$ for subgroups H
- The Krull dimension of γ(H) is Ω(H) + 1.
 → the Krull dimension of the ring of components is the maximal splitting number +1
- In specific situations (e.g. symmetric groups) we can describe the strata (and hence the spectrum) fully

 \rightsquigarrow An invitation to the study of the geometry of the homology of Hurwitz spaces.

The algebraic geometry of the ring of components 2/2

Unsolved questions

- Which $\gamma(H')$ intersect the closure of $\gamma(H)$? (necessarily $H' \subseteq H$)
- How does the spectrum compare to that of the group ring?
- What can be done with the (braided-commutative) ring for covers of $\mathbb{A}^1(\mathbb{C})$? with higher homology?

Drawings for symmetric groups (d = 4, 6):

Part III.

Fields of definition of connected components of Hurwitz spaces

A rational point of a Hurwitz space has to lie in a component defined over $\mathbb{Q}.$

 \rightsquigarrow Weak form of RIGP: Find components defined over $\mathbb{Q}.$

Previous work: Dèbes-Emsalem, Cau.

Fields of definition and concatenation

Question

Are the components obtained by gluing components defined over $\mathbb Q$ also defined over $\mathbb Q?$

Gluing is a transcendental operation... Too good to be true?

Fields of definition and concatenation

Question

Are the components obtained by gluing components defined over $\mathbb Q$ also defined over $\mathbb Q?$

Gluing is a transcendental operation... Too good to be true?

An important starting point:

Theorem (Cau)

If x and y are components defined over \mathbb{Q} , the set of "all possible gluings":

$$\{x^{\gamma}y^{\gamma'} \mid (\gamma, \gamma') \in G^2\}$$

is globally defined over \mathbb{Q} . If this is a singleton, *xy* is defined over \mathbb{Q} .

Theorem 8.1.2, i) and ii)

Let *x*, *y* be components defined over *K*. Denote by H_1 , H_2 their respective monodromy groups, and let $H = \langle H_1, H_2 \rangle$. Then:

i) If $H_1H_2 = H$, then xy is defined over K.

ii) If every conjugacy class of *H* which appears in *xy* appears at least *M* times (for some integer *M* depending only on the group *G*), then *xy* is defined over *K*.

Another result: the $G_{\mathbb{Q}}$ -action on components is determined by its action of components with few branch points (Prop 8.2.8). Unsurprising in the light of Belyi's theorem/faithfulness of the Galois action on dessins d'enfants (covers with three branch points). But here we have fixed group/conjugacy classes.

A different result that does not follow from a rigidity principle/Cau's theorem:

Theorem 8.1.2, iii)

Let *x*, *y* be components defined over *K*. Denote by H_1 , H_2 their respective monodromy groups, and let $H = \langle H_1, H_2 \rangle$. Then there is an element $\gamma \in H$ such that $H = \langle H_1, H_2^{\gamma} \rangle$ and such that xy^{γ} is defined over *K*.

Theorem 8.1.2, iii)

Let *x*, *y* be components defined over *K*. Denote by H_1, H_2 their respective monodromy groups, and let $H = \langle H_1, H_2 \rangle$. Then there is an element $\gamma \in H$ such that $H = \langle H_1, H_2^{\gamma} \rangle$ and such that xy^{γ} is defined over *K*.

Sketch of proof.

Construct a sequence K₁, K₂, ... of linearly disjoint extensions of K such that there are marked covers f_i, g_i defined over K_i in the components x, y.
 This is accomplished by using Hilbert's irreducibility theorem repeatedly on Hurwitz spaces themselves.

Theorem 8.1.2, iii)

Let *x*, *y* be components defined over *K*. Denote by H_1 , H_2 their respective monodromy groups, and let $H = \langle H_1, H_2 \rangle$. Then there is an element $\gamma \in H$ such that $H = \langle H_1, H_2^{\gamma} \rangle$ and such that xy^{γ} is defined over *K*.

Sketch of proof.

- Construct a sequence $K_1, K_2, ...$ of linearly disjoint extensions of K such that there are marked covers f_i, g_i defined over K_i in the components x, y.
- Patch f_i , g_i over the complete valued field $K_i((X))$. A result of Cau ensures that the patched cover lies in a component c_i of the form $x^{\gamma}y^{\gamma'}$.

Theorem 8.1.2, iii)

Let *x*, *y* be components defined over *K*. Denote by H_1 , H_2 their respective monodromy groups, and let $H = \langle H_1, H_2 \rangle$. Then there is an element $\gamma \in H$ such that $H = \langle H_1, H_2^{\gamma} \rangle$ and such that xy^{γ} is defined over *K*.

Sketch of proof.

- Construct a sequence $K_1, K_2, ...$ of linearly disjoint extensions of K such that there are marked covers f_i, g_i defined over K_i in the components x, y.
- Patch f_i , g_i over the complete valued field $K_i((X))$. A result of Cau ensures that the patched cover lies in a component c_i of the form $x^{\gamma}y^{\gamma'}$.
- There are finitely many $x^{\gamma}y^{\gamma'} \rightsquigarrow$ there is some $i \neq i'$ such that $c_i = c_{i'}$. It is defined over $\overline{\mathbb{Q}} \cap K_i((X)) \cap K_{i'}((X)) = K$.

Proposition 8.4.8 If $\langle g_1, ..., g_n \rangle = G$, there is a component def. $/\mathbb{Q}$ of connected *G*-covers with:

$$|\{i \mid \mathsf{ord}(g_i) = 2\}| + \sum_{i=1}^{n} \varphi(\mathsf{ord}(g_i))$$

branch points.

- Mathieu group M₂₃: generated by two order 3 elements → 4 branch points.
 Cau's criterion gave 15 branch points.
- $PSL_2(16) \rtimes \mathbb{Z}/2\mathbb{Z}$: generated by two order 6 elements $\rightsquigarrow 4$ branch points.