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Abstracts

Covers of P1 and their moduli: where arithmetic, geometry and
combinatorics meet

Béranger Seguin

During the last fifty years, the theory of finite branched covers of the projective
line has played a major role in inverse Galois theory. The main reason behind this
success is that this theory makes it possible to use topological and geometric argu-
ments to study Galois theory over function fields (with consequences over number
fields because of Hilbert’s irreducibility theorem). Moreover, the topological ob-
jects involved admit combinatorial descriptions — this has allowed computational
approaches to shed new light on various aspects of inverse Galois theory.

In this report, we present two contributions: the first one is the description
of combinatorial objects generalizing dessins d’enfants to covers of the line with
arbitrary numbers of branch points, the second one is a patching result over number
fields for components of Hurwitz spaces, i.e. irreducible families of covers.

For the whole report, we fix a finite group G and an integer n.
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1. Covers of the line

We fix a set t = {t1, . . . , tn} of n distinct points of the complex projective line
P1(C) (which we call a configuration) and a basepoint t0 ∈ P1(C) \ t. We start by
recalling some terminology to avoid any ambiguity.

1.1. G-covers. In this report, a cover (branched at t) always refers to a finite
covering map p : Y → P1(C) \ t. A marked cover comes with a point in the
fiber p−1(t0). A G-cover comes with a group morphism G → Aut(p) inducing
a simply transitive action of G on p−1(t0). We do not require connectedness.
Connected G-covers are Galois covers with automorphism group isomorphic to G.

The monodromy morphism of a marked G-cover is a group morphism π1(P1(C)\
t, t0) → G, which is surjective if and only if the cover is connected. Its image is
the monodromy group of the cover. Each group morphism π1(P1(C) \ t, t0) → G
is the monodromy morphism of a marked G-cover, unique up to isomorphism.

Since the fundamental group of P1 \ t is generated by loops γ1, . . . , γn subject to
the sole relation γ1 · · · γn = 1, isomorphism classes of marked G-covers branched at
t correspond to n-tuples (g1, . . . , gn) of elements of G (the monodromy elements)
satisfying g1 · · · gn = 1. Connectedness corresponds to the condition that the
monodromy elements generate G.

1.2. Generalized dessins. In the case n = 3, a combinatorial model of covers
of P1(C) \ {0, 1,∞} has been introduced in [4] under the name dessins d’enfants.
The case n = 3 is special in two ways:

(1) Since PSL2(C) acts 3-transitively on points, all choices of t are equivalent.
(2) This case is universal for the study of algebraic curves: by Bely̆ı’s theorem,

every curve defined over Q̄ covers P1(C) with at most 3 branch points.

However, if one is interested not in algebraic curves, but in covers (morphisms
between curves) with arbitrary numbers of branch points, which many applications
in inverse Galois theory involve, then this description is not enough. For example,
there are no connected G-covers when n = 3 and G is not 2-generated.

In ongoing work1, we define and study a notion of “generalized dessins”. These
objects may be described as (n−1)-partite “rainbow-colored” hypermaps (instead
of being edges, the “hyperedges” are (n− 1)-gones with one vertex of each color,
and there are n− 1 colors) embedded on surfaces. One hope is that, starting with
this description, a program to describe the Galois action on covers combinatorially
is developed, in the spirit of Grothendieck-Teichmüller theory which has basically
(although this is a vast simplification) come out of the case n = 3.

Here is an example:
Write down the cycles corresponding to the appearance order of the hyperedges

during a counterclockwise rotation around each white vertex. The product of
these cycles defines a permutation σ◦ = (152)(364) of the hyperedges. Doing
the same for crossed and black vertices yields σ⊗ = (14) and σ• = (16)(24)(35).

1At the moment, this work has only been made public as a series of blog posts, accessible at

the following URL: https://lebarde.alwaysdata.net/blog/2023/dessins-1/.
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Figure 1. A generalized dessin corresponding to the case n = 4,
where we have labeled the hyperedges (grey triangles)

Finally, let σ∞ = (σ◦ σ⊗ σ•)
−1 = (13)(45), whose four cycles correspond to the

four connected components of the complement of the dessin (i.e. the white areas)
– depending on which component the •−◦ boundary of a given hyperedge touches.
The permutations σ◦, σ⊗, σ•, σ∞ are the monodromy elements of a cover: this
dessin corresponds to a non-Galois connected cover of degree 6 of the projective
line branched at four points. Its monodromy group is the subgroup ofS6 generated
by σ◦, σ⊗, and σ•, which is isomorphic to Z/2Z×S4. This cover has genus 0 (it
is embedded in this page!).
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Figure 2. A triangle, drawn on P1(C) \ {t1, t2, t3,∞}, whose
preimage under a covering map gives the corresponding dessin.

2. Patching components of Hurwitz spaces over number fields

In this section, we present Hurwitz spaces, their components, and the gluing
of components, and we give number-theoretical applications of these objects. The
original results in this section are all in [6, 8, 7]. We fix a number field K.

2.1. Hurwitz spaces. Riemann’s existence theorem implies that covers form a
category equivalent to that of algebraic covers, i.e. generically étale finite mor-
phisms from a smooth curve to P1

C. Since smooth curves are determined by their
function fields, connected G-covers correspond to Galois extensions of C(T ) with
Galois group G. If a G-cover is moreover defined over K, it corresponds to a
regular extension F |K(T ), where regular means that F ∩ K̄ = K.

There is a Z[1/|G|]-scheme Hur∗G,n, the Hurwitz space, whose C-points corre-
spond to marked G-covers branched at n distinct points. Moreover, K-points of
this scheme correspond to regular Galois G-extension of K(T ) having an unrami-
fied prime of degree 1. To put it shortly, this turns instances of the inverse Galois
problem into Diophantine problems: do Hurwitz spaces have rational points?
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2.2. Fields of definitions of concatenated components. From now on, we
call component a geometrically connected component of the Hurwitz space Hur∗G,n.
Since a K-point must lie in a component defined over K, fields of definition of
components are of special interest for inverse Galois theory: they tell us where to
look for. There is a topological gluing operation on components, induced in terms
of tuples by the concatenation:

(g1, . . . , gn), (g
′
1, . . . , g

′
n′) 7→ (g1, . . . , gn, g

′
1, . . . , g

′
n′).

We denote by xy the component obtained by gluing two components x and y. The
focus of [8] is the following question:

Problem 1. Do components obtained by gluing components defined over K are
also defined over K, and we give positive answers in various situations.

Previous work on this question includes [1], where Cau obtains some positive
results generalizing those of [3]. The following result is [8, Theorem 5.4]:

Theorem 2. Let x, y be components defined over K with respective monodromy
groups H1, H2 (⊆ G). Let H = ⟨H1, H2⟩. Then there is an element γ ∈ H such
that H = ⟨H1, H

γ
2 ⟩ and such that xyγ is defined over K.

The proof of the theorem is in three steps:

Step 1 – construct infinitely many linearly disjoint extensions of K over
which x and y have points. Take arbitrary geometric points in the components
x and y lying above a K-rational configuration, and denote by K1 the smallest
Galois extension of K over which they are rational. By Hilbert’s irreducibility
theorem, there is a K-rational configuration above which the fibers of x and y are
both irreducible over K1. Choose arbitrary geometric points in the fibers of x and
y above t. Let K2 be the smallest Galois extension of K over which these points
are both rational. By irreducibility of the fibers, K2 and K1 are linearly disjoint
over K. Iterate this process to define an infinite sequence K1,K2, . . . of pairwise
linearly disjoint extensions of K such that for all i ≥ 1, the components x, y both
have Ki-points, denoted respectively fi and gi.

Step 2 – patching. See fi and gi as covers over the complete valued fieldKi((X)).
Use the algebraic variant of Harbater’s theory of patching (cf. [5]) to patch them
into a cover defined over Ki((X)) with monodromy group H. By a result of Cau

[1, Prop. 3.9], the patched cover is in a component ci of the form xγ′
iyγi .

Step 3 – pigeonhole. Since there are finitely many components of the form xγ′
yγ ,

there are distinct i, i′ such that ci = ci′ . The component ci = ci′ is defined over
K̄ ∩Ki((X))∩Ki′((X)) = K. Finally, conjugate ci by (γ′

i)
−1 to ensure γ′ = 1. □

This theorem may be used to construct components defined over Q with rela-
tively few branch points compared to those constructed in [1]:

Corollary 3 ([7, Proposition 8.4.8]). If G is generated by elements g1, . . . , gn
among which m(i) elements are of order i, there is a component defined over
Q of the Hurwitz space of connected G-covers whose number of branch points is
2m(2) +

∑
i≥3 m(i)φ(i), where φ denotes Euler’s totient function.



MFO-RIMS Tandem Workshop – Arithmetic Homotopy and Galois Theory 5

For example, if the group G is generated by two elements with orders in
{2, 3, 4, 6}, then there are components defined over Q of connected G-covers with
four branch points (of Harbater-Mumford type). This applies to the Mathieu
group M23 and to the group PSL2(16)⋊ Z/2Z.

2.3. The use of gluing for enumerative problems, and extensions of Fq(T ).
Besides allowing to construct components with small fields of definition, the gluing
operation also helps in estimating the asymptotical homology of Hurwitz spaces,
which is key to the study of Malle’s conjecture over function fields over finite fields.
We refer to [2] or to Westerland’s talk in the present volume for additional details.

The gluing operation on components of Hurwitz spaces induces a ring structure
on the set of formal sums of components (the “ring of components”). In [6], we
studied this ring closely in order to compute both the exponent (the “splitting
number”) and the leading coefficient of the asymptotical number of components
as the number of branch points increases. This estimate has been applied in the
updated version of [2] to the question of the distribution of G-extensions of Fq(T ).
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Nombres de Bordeaux 24.3 (2012), 557–582.

[2] J. S. Ellenberg, T. Tran, and C. Westerland, Fox-Neuwirth- Fuks cells, quantum shuffle

algebras, and Malle’s conjecture for function fields (v2), arXiv: 1701.04541v2 (2023).
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