On matrices commuting with their Frobenius

Fabian Gundlach* Béranger Seguin®

ABSTRACT. The Frobenius of a matrix M with coefficients in F, is the matrix o(M) obtained
by raising each coefficient to the p-th power. We consider the question of counting matrices with
coefficients in [F, which commute with their Frobenius, asymptotically when ¢ is a large power of p.
We give answers for matrices of size 2, for diagonalizable matrices, and for matrices whose eigenspaces
are defined over F),. Moreover, we explain what is needed to solve the case of general matrices. We
also solve (for both diagonalizable and general matrices) the corresponding problem when one counts
matrices M commuting with all the matrices o(M), o2(M), ... in their Frobenius orbit.
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1. INTRODUCTION

Throughout the paper, we fix a prime power p and an integer n > 2. For any field K, we denote
by 9, (K) the ring of n x n-matrices with coefficients in K and by 93138 (K) the subset of matrices
that are diagonalizable over the algebraic closure K. We denote by o the Frobenius automorphism
of the Fy-algebra 9,,(F,) acting entrywise by = — 2. The symbol ¢ always denotes a power of p.

1.1. Main results

Consider the following four subsets of 9, (F,,):
X ={M e M, (F,) | M and o(M) commute}, xdee = x N ondieg(F),
Xoo = {M € M, (F,) ’ M,o(M),c?(M),... commute pairwise}, xding — x o nondias(F,).

In this paper, we estimate the asymptotic sizes of the intersections of these sets with 91, (FF,) as
g — oo (p and n are fixed, and ¢ is a power of p). Letting F, be any finite field containing [F,,
our main results are the following three theorems (the implied constants in the O-estimates are all
independent of ¢):
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Theorem 1.1 (cf. Theorem 3.5). We have |Xd28 09N, (F,)| = L e 2(gvh).

Theorem 1.2 (cf. Theorem 3.7, and Corollary 2.2 for the case n = 2). We have
|.'foo N mn(]Fq)’ = coo(p’ n) . an2/4J+1 + Op,n(q\‘n2/4J)7

where
coo(p,2) = p* +p+ 1, Coo(p,3) = p° +p° + 3p* +3p® + 3p* + p+ 1,

Coo(pyn) = <n72> if n > 4 is even, Coo(pymn) = 2<Ln7/l2j> if n > 5 is odd.
P P

(The Gaussian binomial coefficient (Z)p 18 the number of k-dimensional subspaces of IE‘Z)

Theorem 1.3 (cf. Theorem 4.17). We have

2 .
p ifn =2,
|x9E N0L, ()| = <8 (p,m) - g7 4 0, (gl /3412) where ¢E(p,n) = {2 ifn =4,
1 ifn¢ {24}

Lastly, we relate the exponent of ¢ in the asymptotics of | XN, (F,)| as ¢ — oo to the dimensions
of intersections Cent M N C1 M, where Cent M and Cl M respectively denote the centralizer and
conjugacy class of a matrix M € M, (F,). More precisely, define for any M € 9, (F,) the integer

d(M) := (number of distinct eigenvalues of M) + dim(Cent M N Cl1M). (1.1)

We prove a general statement (Proposition 5.8), which implies the following:

Theorem 1.4. For any finite field F, O Fp,, we have |X NI, (F,)| = |X488 NN, (F,)| + Op.n(g®m),

where ay,,, is the mazimum value of d(M) over non-diagonalizable matrices M € I, (F,)\ Mdias(F,,).

Unfortunately, we are unable to compute d(M) in general. This is related to the hard problem
of classifying pairs of commuting matrices up to simultaneous conjugation. In Section 6, we deal
with a special case where that problem is solved, in order to illustrate how the principle behind
Proposition 5.8 may be applied. Specifically, we prove the following theorem about the set X¢&-/Fr
of matrices M € X whose eigenspaces are all defined over F):

Theorem 1.5 (cf. Theorem 6.9). For any finite field F, O F,,, we have
|3€eig-/Fp M, (F,)| = /T (p n) - an2/4J+1 + Op,n(qL"Q/‘*J),

for specific constants *i&/Fr (p,n), given in Theorem 6.9.

1.2.  Outline and strategy

In Section 2, we quickly deal with the special case n = 2.

In Section 3, we prove Theorems 1.1 and 1.2 (Theorems 3.5 and 3.7) about X418 and X. In
both cases, we observe (see Lemma 3.1) that for any matrix M € X, its Frobenius orbit (o"(M)),.
generates a commutative algebra of M, (IF,) defined over IF,,, and consisting of simultaneously diag-
onalizable matrices when moreover M € xg;ag. Hence, the statements boil down to studying such

subalgebras. More specifically, we prove the two following results:

Theorem 1.6 (cf. Lemma 3.2(a) and Theorem 3.4). There are ezactly p™ =" commutative n-

dimensional subalgebras of M,,(F,,) formed of diagonalizable matrices, and none of higher dimension.



Theorem 1.7 (cf. Theorem 3.6). Let n > 3 and let coo(p,n) be as in Theorem 1.2. There are
ezactly coo(p,n) commutative (|n?/4] + 1)-dimensional subalgebras of M, (F,), and none of higher
dimension.

(Theorem 1.7/Theorem 3.6 is a consequence of [Sch05].)

In Section 4, we prove Theorem 1.3 about X422 Using the Lang-Weil bound, the claim reduces
to the computation of geometric invariants of the constructible subset X928 C 0t,, (Fp), namely its
dimension and the number of its irreducible components of maximal dimension. To determine the
top-dimensional irreducible components of X918 we stratify this set according to how the eigenspaces
of an element M intersect the eigenspaces of its Frobenius conjugate o(M), using quivers to encode
this combinatorial information.

In Section 5, we show Proposition 5.8 (and thus Theorem 1.4). To relate the dimension of X to
the numbers d(M) defined above, we stratify 9, (F,) according to the shape of the Jordan normal
form of matrices (i.e., the number of Jordan blocks of each size for each eigenvalue).

In Section 6, we prove Theorem 6.9, which counts matrices in X N 9, (F,;) whose eigenspaces
are defined over IF,,. This special case lets us illustrate the principle described in Section 5, and is
made accessible by the fact that classifying pairs of commuting matrices whose eigenspaces coincide
is relatively easy (cf. Proposition 6.4/Lemma 6.5).

1.3. Motivation and related results

Our initial contact with this problem came from the role played by analogous counts in the distri-
bution of wildly ramified extensions of the local function field Fy (1) (see [GS25, Propositions 4.6
and 4.9]). In [GS25, Lemmas 6.3, 6.4, 6.5], we have obtained estimates for the number of matrices
commuting with their Frobenius (as well as with the Frobenius of their Frobenius, etc.) in a specific
group of invertible matrices, namely the Heisenberg group Hj(F,), and this has let us describe the
distribution of Hy(F,)-extensions of function fields. We were led to generalize that question to more
general matrices, and to study it for itself, after realizing that it was a deep and non-trivial problem.

A different point of view is that we are counting the (F,,o)-points of the difference scheme
defined by the difference equation Mo (M) = o(M)M (for X and X%28). This makes our problem
fit into the general framework of Hrushovski-Lang—Weil estimates as studied in [SV22, HHYZ2424].
Through that lens, our results may be seen as estimating invariants of these difference schemes,
notably the “transformal dimension” which seems related to the exponent of ¢ in our asymptotics.
Alternatively, one can define the variety of pairs of commuting matrices (an irreducible subvariety
of A?FZQ which is well-studied, see e.g. [MT55, Ger6la, Gur92, GS00]) and describe the geometry
(dimension, irreducible components, ...) of its intersection with the graph of o (also a subvariety
of A%Zz). Our results may be seen as contributing to this description.

Another inspiration for studying this question comes from previous results about counting spe-
cific kinds of matrices over Fy, cf. [FH58, Ger61b] (for nilpotent matrices), [BGS14] (for symmetric
nilpotent matrices), [Sch08] (for the distribution of characteristic polynomials), [FF60] (for pairs of
commuting matrices), [Hua23] (for mutually annihilating pairs of matrices), etc.

1.4. Terminology and conventions

A linear subspace V C FZ is defined over Fpr if it is o"-invariant, i.e., " (V) = V. By Galois descent
for vector spaces, this is equivalent to the vector space having a basis consisting of vectors in Fj.,
i.e., to the existence of an isomorphism V ~ V' QF Fp for the Fpr-vector space V! =V N Fpr.

Varieties. In this paper, the word variety always refers to a (classical) quasi-projective variety
over F,, ie., a (Zariski) locally closed subset of P"(F,) for some r > 1. We do not assume that

varieties are irreducible. We say that a variety V' C IP"(IF,) is defined over F), if it is o-invariant, i.e.,

o(V) =V where o: P"(F,) — P"(F,) is induced by o: x +— aP. The dimension of a constructible



subset of P"(F,) is the (Krull) dimension of its Zariski closure. A regular map f: X — Y between

smooth varieties is étale if for every x € X, the differential D, f: T, X — Tj(,,)Y of f at z is an

isomorphism of IF,-vector spaces.

1.5. Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) — Project-ID 491392403 — TRR 358 (Project A4).

2. THE CASE OF 2 X 2 MATRICES

We first quickly deal with the case n = 2, as it is particularly simple to obtain an exact count in this
case, and the behavior is different compared to larger values of n.

Proposition 2.1. Assume that n =2, and let M € My (F,). The following are equivalent:
(i) M is of the form AM' + ply with A\, u € F, and M’ € My(F).
(i) M € Xo.
(iii) M € X.
Proof. Clearly, (i) = (ii) = (iii). Assume (iii). If M is a scalar matrix, (i) is clear. Otherwise,

the condition that M = (‘é g) and o(M) = (Z(('Z)) ZEZ%) commute rewrites as the following system of
equations:

( (c) ( (b) bo(c) = co(b)
aa(b) —i—bO'(d) = bO'(CL) +d‘7<b) —a) = —a)o
co(a) +do(c) = ao(c) + co(d) - iggfil — a; = EZ - agagg
co(b) +do(d) = bo(c)+ do(d) |

meaning that the point [b : ¢ : d — a] € P?(F,) is o-invariant, so belongs to P*(F,). Writing
(b,c,d —a) = \(B,7,96) with 5,7,d € F, and \ € F;, we have (i) with u = a and M’ = (9/?) O
Corollary 2.2. Assume that n =2, and let F, be a finite field containing F,. Then, |XNM,(Fy)| =
|Xoo NN, (Fg)| =g+ (P* +p+1)(g—1)g.

Proof. Using Proposition 2.1, the size of X N9, (Fy) = Xoc NN, (Fy) is given by

¢ +  @PHp+l) (q—1) -
~—~ | ——— ~—~
scalar matrices choices of [b:c:d—a]€P?(F,) choices of (b,c,d—a)E]Fg\{(0,0,0)} choices of a O

once [b:c:d—a] is fixed

3. MATRICES COMMUTING WITH THEIR WHOLE FROBENIUS ORBIT

In this section, we determine the asymptotics of |Xdi28 N9, (F,)| and |Xo N M, (F,)], i.e., we prove
Theorems 3.5 and 3.7 (which are Theorems 1.1 and 1.2). For any field K, we call a subalgebra A
of M, (K) diagonalizable if its elements are simultaneously diagonalizable over K. In particular, a
diagonalizable subalgebra is commutative. The sets X488 and X, can be decomposed using the
(finitely many) diagonalizable (resp. commutative) subalgebras of M, (F),):

!By Hilbert’s Nullstellensatz, varieties form a category equivalent to that of reduced quasi-projective schemes

over Fp,. A variety is defined over F, if and only if the corresponding reduced Fp-subscheme of IP’% is obtained via
p

extension of scalars of a geometrically reduced Fj-subscheme of ]P’@p. A regular map between smooth varieties is étale
if and only if the corresponding morphism of reduced smooth quasi-projective schemes is étale.



Lemma 3.1. We have

%géag = U A ®F, Fp and X = U A ®F, Fp.
ACM, (Fp) ACM, (Fp)
diagonalizable commutative
subalgebra subalgebra

Proof. The inclusions 2 are clear: if M € A®p, F, for a commutative subalgebra A of M, (F,), then
the matrices o*(M) for i = 0,1, ... all belong to the commutative algebra A ®F, I, hence commute
with each other. If moreover A is diagonalizable, then so is M.

For the inclusions C, consider any matrix M € X,,. Since the matrices M,o(M),... commute,
they generate a commutative F)-subalgebra R of 9,,(F,). This subalgebra is o-invariant, so by Galois
descent we have R = A ®p, [, for some commutative subalgebra A of 90, (F,), proving the second
equality. If moreover M € %ggag, then the commuting matrices M,o(M),... are diagonalizable,
hence they are simultaneously diagonalizable. Any common eigenbasis of these matrices is in fact a
common eigenbasis of all matrices in R = A®Fpr, so A C M, (FF,) is a diagonalizable subalgebra. [J

As a consequence of Lemma 3.1, describing the asymptotic sizes of X328 MM, (F,) (resp. of XooN
M, (F,y)) boils down to determining the dimension and the number of the maximal-dimensional
diagonalizable (resp. commutative) subalgebras of 9, (FF,). This is done in Subsection 3.1 and
Subsection 3.2, respectively.

3.1. Diagonalizable matrices

Lemma 3.2.

(a) Every diagonalizable subalgebra of My, (Fy) has dimension at most n.

(b) There is a bijection between the set of n-dimensional diagonalizable subalgebras A of M, (F,)
and the set of unordered n-tuples {E1, ..., E,} of one-dimensional subspaces ofFZ such that

E\®...0E,=F,.

(c) An n-dimensional diagonalizable subalgebra A is defined over F), if and only if the corresponding
tuple {E, . .., E,} is o-invariant, i.e., if there is a permutation m € &, such that o(E;) = E ).

Proof. Let A be any diagonalizable subalgebra of 9, (F,), and pick a common eigenbasis B =
(é1,...,en) of the matrices in A, so that every matrix in A is diagonal when expressed in B. We
immediately obtain (a), and we see that if A is n-dimensional, then it consists of all matrices which
are diagonal with respect to B. In this case, B is unique up to permutation and rescaling, as the
spaces (e;) are exactly the one-dimensional subspaces which are invariant under all matrices in A.
Thus, A — {{e1),...,{(en)} defines a bijection as in (b). For (c), note that if ey, ..., e, is a common
eigenbasis of A, then o(e1),...,o(ey,) is a common eigenbasis of o(A). Combined with this, (b)
implies that A is fixed by o if and only if o permutes the eigenspaces (e1),. .., (ey). O

Let c3#8(p,n) be the number of n-dimensional diagonalizable subalgebras of 9, (F,). Distin-
guishing between the possible permutations 7, and using the fact that &,, acts freely on ordered
tuples of pairwise distinct spaces, Lemma 3.2 immediately implies:

ia, 1
cE(pn) = — 3 IN(7)] (3.1)
TI—GG’VL
where N () is the set of ordered tuples (F1, ..., E,) of one-dimensional subspaces of FZ such that

E\®...®E,=F, and 0(E;) = Ey(;) foralli=1,...,n.



Lemma 3.3. For any permutation m € &,,, we have

GLu(Fy)|
HC cycle in 7r(p|0| - 1)

[N (m)| =

Proof. We show that GL,(F,) acts transitively on N (), with stabilizers isomorphic to [[~ IF;‘C‘.
The claim will then immediately follow using the orbit-stabilizer theorem.

Let C1,...,C, be the cycles of w. For any (E1,...,E,) € N(m) and any cycle Cy, of 7, consider
the subspace Fy == @,c¢, Ei. Since m permutes the elements of the cycle Cy, this subspace Fy is by
definition of N () fixed by o and hence defined over F,. Moreover, @, Fi, = @, E; = ﬁ;.

The group GL,(F,) acts transitively on the set of tuples (F1, ..., F}) of subspaces of I} such that
i@ ...0 F. =F) and dim Fj, = |Cy| for all k, and the stabilizers for that action are isomorphic
to 1 GL(Fy). It is hence sufficient to prove, for fixed subspaces Fy,..., F/ of [F7, that the action
of [T, GL(F] ® F,) on the set of tuples (E1,..., E,) of one-dimensional subspaces of FZ such that
0(E;) = Er) and @;cc, Bi = F, ® F,, is transitive, with stabilizers isomorphic to []j F;\Ckl' As
that action is “block-diagonal”, we can restrict our attention to a single cycle. We now assume that
m=(1,...,n).

We will show that we then have a (GL,,(Fp)-equivariant) bijection

[ {Fp-basis (a1, ...,an) of Fyn}/Fyu — N(m)

sending [(a1,...,a,)] to the tuple (E1,...,E,) where By = {(a1,...,a,)) and E; = o'~ Y(E;) for
i =2,...,n. Since the group GL,(F,) acts simply transitively on the set of F,-bases of Fyn, it will
then indeed act transitively on N (7) with stabilizer isomorphic to I

It remains to show that the map f is well-defined and bijective. For any (Ei,...,E,) € N(m),
we have E; = o'~Y(E)) for i = 2,...,n and 0™(E;) = Ej, so E; must be generated by a vector with
coordinates in Fyn. Moreover, if we define By = ((ay,...,a,)) and E; = o'"1(E)) for i = 2,...,n,
then E,..., E, span FZ if and only if the matrix (aifl(aj))iﬁj is invertible, which is equivalent to

ai,...,ap, forming an F)-basis of ]Fpn.2 O
Theorem 3.4 (cf. Theorem 1.6). We have c328(p, n) = p° .

Proof. For any partition of n with ny parts of size ¢, there are exactly n!/[];>1 £"* ny! permutations
with ng cycles of length ¢ (the centralizer of any such permutation is isomorphic to [[,(Z/lZ)" x&,,).
Hence, Equation (3.1) and Lemma 3.3 imply

el (p,n) > 1
|GL, (Fp)| [Te>1 €7 ! (p* —1)me

partition of n
with ny parts of size £

As sizes of parts of partitions of n are characterized by the property >, ¢ny = n (where ny > 0 for
all £, and ny, = 0 for almost all ¢), the right-hand side is the coefficient in front of X" of the power
series

€ —ZXZ
exp exp

Z i~ 1 S = Mev{ ) = M=)
almostallO

1f ( (a])) ~is singular, then there is a non-trivial linear combination Zj \;jo" ™ (a;) = 0 with coefficients in Fyn
between its columns, which amounts to Zj o'(\j)a; = 0 for alli € {0,...,n—1}, so the vector (a1,...,an) € (Fpn)™ is
orthogonal to the subspace Span, (Ui(/\l, .oy An) ) C (Fpn)™; that subspace is o-invariant, hence admits an Fp-basis, in

particular it contains a non-zero vector in F,, which implies that there is a non-trivial linear combination Zj pia; =0
with coefficients in F,. Conversely, if a1,...,an are linearly dependent over F,, then up to the action of GL,(Fp), we
can assume that a, = 0 and then (a’_l(aj))i i is singular as its last column vanishes.



_ p—fo — _ —(1+k) _ —ki yvi
= exp Z 7 p ) =exp Zln X) —H HZp X
>1

> k>0 k>1 k>11i>0
k>0
- ki . 11+ +...=n _
= E ( E p Zk21 Zk))(vnz E E {Zl,ZQ,...ZO 12 2 kin — } -p sSX™.
n>0 41,82,...>20 n>0 s>n k=1 k=5
i1+ig+...=n

On the other hand:

2 n(n—1)
P p 7 p Vo Lt n
LEnE Tl o Z( ) 2. n(,gl—pk)X

n>0 (p n>0 \k=1 p nzop

=2 = (H Zp’”>X”—Z ( > HP'“’“>X”—Z< T p—(zglkik+n)>Xn

o P" o P"

k=1 i>0 i1y00yin >0 k=1 n>0 \i,...;in>0
=> > {il,...,inzo Zkikzs—n} p X
n>0 s>n k=1

Therefore, the claim reduces to the following equality for all s > n:
’i1+’i2—|—...:n}

11,79,... >0 . =< %,...,0p >0
‘{ 1,02, sl Zk>1kzk:3 ’{ 1 yn Z

We can interpret a list (i1,42,...) such that i1 +i2 + ... = n and >~ kix = s as a partition of s
with exactly n (non-zero) parts (iz, is the number of parts of size k). Similarly, we can interpret a
tuple (i1,...,i,) such that >-7_; kix, = s — n as a partition of s — n whose parts all have size < n.
Consider a partition of s with exactly n parts. Removing 1 from each part turns this partition
into a partition of s —n with at most n parts. Then, taking conjugate partitions turns that partition
into a partition of s —n whose parts all have sizes < n. As both of these operations can be inverted,
we have described a bijection between the two sets, proving the claim. O

Zkik—s—n}’.

k=1

Theorem 3.5 (cf. Theorem 1.1). For any finite field Fy O Fp, we have
X525 QM (Fy)| =™ " " + Opnld”™ ™).

Proof. By Lemma 3.2(a) and Theorem 3.4, there are exactly ¢d8(p,n) = p""~" diagonalizable
subalgebras of 9, (IF,) of dimension n and none of larger dimension. The claim thus follows from
Lemma 3.1 by inclusion-exclusion. (For any n-dimensional subalgebra A of M,,(F,) defined over F,,,
we have [ANIN,(F,)| = ¢", and for any two such subalgebras A; # Ay, we have |41 NA2NM,, (F,)| <
L) O]

3.2. General matrices

Let n > 3. We recall the definition of the Gaussian binomial coeflficient

<N> _ @ =0 1)
k), =1 (p=1)

which is the number of k-dimensional subspaces of F}.

Theorem 3.6 (cf. Theorem 1.7). The mazimal dimension of a commutative subalgebra of My, (Fp)
s |n?/4] + 1, and the number coo(p,n) of commutative subalgebras of that dimension is given by:

Coo(,3) =P +p° +3p* +3p° +3p> +p+ 1,

Coo(pyn) = <n7;2> if n > 4 is even, Coo(pyn) = 2<Ln72j> if n > 5 is odd.
P P



Proof. The commutative subalgebras of maximal dimension of 9, (F,) were classified in [Sch05] (see
also [Mir98]). In particular, they have dimension |n?/4] + 1.

We now explain how to parametrize them. For any subspace V' C FZ, let C'v be the linear
subspace of matrices A € M,,(F,) such that im A C V C ker A, and let C{, be the algebra Cy +F,I,,.
The product of any two elements of Cy is zero, so C{, is a commutative subalgebra of 9, (F,).
Moreover, V' can be recovered as the union of all images of nilpotent elements of Cf,, so the map
V — CY, is injective. We have o(C{,) = C’(’T(V)7 so the algebra Cf, is defined over F), if and only
if V' is defined over F,. By [Sch05, Satz II and Satz III], when n > 3, the commutative subalgebras
of M, (F,) of (maximal) dimension |n?/4|+1 are exactly those of the form C{, with dim V = |n/2] or
dim V = [n/2]. So, for n > 3, there are as many (|n?/4| + 1)-dimensional commutative subalgebras

defined over ), as there are choices for such a subspace V' defined over I, namely (n72)p for even n
and (Ln72 | )p + ([nr/lﬂ )p = 2(Ln72 | )p for odd n. This proves the result for n > 3.

We now compute coo(p,3). According to [Sch05, Satz II, Satz IIT and p. 76], there are five conju-
gacy classes (up to GL3(F,)-conjugation) of three-dimensional commutative subalgebras of M3(F,).
In the following table, we list one representative A of each conjugacy class and the number N(A)
of subalgebras defined over F,, in the corresponding conjugacy class (the computations of N(A) are
detailed below the table):

representative A N(A)

a, 8,7 €

Q

o™

~—
|

p} p?+p+1

{(
@) {(“a%)|aB.y€F,) P’ +p+1
@ {("s,)|aBsreR, %
(4) {(ag >‘a,6,'y€Fp} P(p* +p+1)(p+1)
)

’m@véﬂ}(ﬁ+p+ﬂ@+D@—U

Cases (1) and (2) correspond to the conjugacy classes {C{, | V' C ﬁz one-dimensional} and {CY, | V C
Fﬁ two-dimensional}, respectively, each of which contains (i)’)p = (3)p = p? 4+ p+1 subalgebras defined
over F,, (see the arguments above for odd n > 3). Case (3) corresponds to the conjugacy class of

diagonalizable subalgebras, which according to Theorem 3.4 contains p® subalgebras defined over Fp.
In cases (4) and (5), the GL3(F,)-stabilizers S of A with respect to conjugation are respectively

ab =X = abc
{( cd) ‘ a,¢,d € F), beIFp} and {( d?>
In both cases, we have H'(Gal(F,|F,),S) = {1},% so any algebra which is GL3(F,)-conjugate to A
and defined over F, is actually GL3(F,)-conjugate to A.* The size of the GL3(FF,)-conjugacy class is

|GL3(F,)|/|SNGL3(Fp)|, which is verified to be the number given in the table. Summing everything,
we find that coo(p, 3) = pb + p° + 3p* +3p3 +3p? +p+ 1. O]

a,d,fEF;, b,c,e € F,, with af—d2}.

As in the proof of Theorem 3.5, we deduce from Lemma 3.1 and Theorem 3.6 the following
theorem, which is Theorem 1.2 from the introduction (for n > 3):

3By [Ser79, Chap. X, §1, Exercise 2], the unit group of any algebra defined over F,, has trivial first Galois cohomology.
This directly shows case (4), and case (5) follows by looking at the long exact sequence in cohomology arising from the

short exact sequence 1 — S — T — Rj — 1, where T is the algebra of upper triangular matrices with coefficients
— abc
in Fp, and the homomorphism on the right is ( d ;) — afd 2.
*If the algebra U ' AU is defined over F,, for some U € GL3(TF,), we obtain a 1-cocycle 7 — Ur(U)™"' € S. Tt must
be a 1-coboundary 7+ T7(T) ™" for some T € S, so U’ := T~ U lies in GL3(F,), and then U *AU = U'"1AU’.



Theorem 3.7. Let coo(p,n) be as in Theorem 3.6. For any finite field Fy O F),, we have

|%OO N ?J)Tn(Fq)] = coo(p’ n) . an2/4J+1 + Op,n(an2/4J)'

4. DIAGONALIZABLE MATRICES COMMUTING WITH THEIR FROBENIUS

In this section, we determine the asymptotics of |X48 N 9, (F,)|, i.e., we prove Theorem 4.17
(which is Theorem 1.3). In Subsection 4.1, we associate to any such matrix a quiver Q encoding
the dimensions of the intersections of the eigenspaces of M with those of o(M). This will let us
write X419 as a disjoint union of equidimensional constructible subsets :{gag C M, (F,) ~ FZ .
Subsection 4.2, we identify those quivers Q for which the dimension of %gag is maximal, and in
Subsections 4.3 to 4.6, we compute the irreducible components of the corresponding sets %gag, and
we show that they are defined over F,. This allows us to prove Theorem 1.3 using the Lang—Weil

bound in Subsection 4.7.

In

4.1. Diagonalizable matrices and their associated quivers

Balanced quivers. A quiver is a finite directed graph in which one also allows loops (from a vertex
to itself) and multiple parallel edges. We say that a vertex of a quiver is isolated if there are no edges
(including loops) having that vertex as either source or target. We say that a quiver is balanced if,
for each vertex, equally many edges have that vertex as source and as target (i.e., in-degrees and
out-degrees coincide). If Q is a quiver, we denote by V(Q) the set of its vertices, and by QO(i, j)
the set of edges i — j for any ¢,j € V(Q). Assuming that Q is balanced, we also define the degree
do(i) = Yjev(o) |9, 1) = X ev(0) |9, )| of each vertex i € V(Q). We let Bal, be the (finite)
set of isomorphism classes of balanced quivers with no isolated vertices and n edges.

Quiver associated to a matrix. Let M € 9, (FF,). For each eigenvalue A of M, let Ej be the
eigenspace ker(M — \I,,). Note that o(E)) = ker(o(M) — o(A\)I,,) is the eigenspace of (M) for the
eigenvalue o(\).

Definition 4.1. We associate to the matrix M a quiver Qj; defined as follows:
e its vertices are the eigenvalues \ of M;
o for any eigenvalues A, i1, the number of edges A — p is the dimension of Ey No(E,).

Proposition 4.2. Let M € imgiag(F,,). Then, M € X498 if and only if the corresponding quiver Qyy
has exactly n edges. In that case, Qnr € Baly,, and dim Ey = dg,,(\) for all eigenvalues A.

Proof. Since @, Ey = FZ and @, o(E)) = EZ, the spaces Ey No(E,) are always linearly indepen-
dent. The diagonalizable matrices M and o(M) commute if and only if they are simultaneously
diagonalizable, i.e., if and only if

@(EA N U(Eu)) ~F,,

A

meaning that the quiver Qs has exactly n edges. In that case, for any eigenvalue A of M, we have
P (Erna(E,)) = Bx = o(Ey) = P(Eu N o(Ey)),
Iz Iz

so the quiver is balanced and satisfies dg,, (A) = dim E) (in particular, it has no isolated vertices). [



The space of matrices having a given quiver. For any quiver Q € Bal,, we define the subset
%gag C xdiag of matrices M such that Qp ~ Q.5 Proposition 4.2 directly implies:

xfiee = | | x§™ (4.1)
QeBal,

We will show that each set %d *8 is constructible, so that, by the Lang—Weil estimates (cf. [LW54]),

the leading term in the asymptotics of |X4128 N9, (F,)| depends on the maximal dimension of f{dlag

over quivers @ € Bal,, and on the number of irreducible components having that dimension that are
defined over F),.

Fix a quiver Q € Bal,. In order to compute the geometric invariants of X5, we explain how
to construct all the diagonalizable matrices M such that Qs ~ Q. For each Vertex 1 of Q, we must
pick an eigenvalue )\; and an eigenspace V;, making sure that:

diag

o the eigenvalues \; are distinct;
o the eigenspaces V; are in direct sum, and together span the entire (n-dimensional) space;
o the dimension of V; N o(Vj) equals the number of edges i — j in Q.

For any finite-dimensional vector space V' and any k, we denote by Gry (V') the Grassmannian variety
parametrizing k-dimensional subspaces of V. This space has dimension k(dim V—k) if 0 < k < dim V'
and is otherwise empty. (See for example [Har92, Lecture 6] for an introduction to Grassmannians.)
We also write P(V) := Gri(V) for the projective space parametrizing one-dimensional subspaces
of V. We will repeatedly make use of the fact that for any k, [, m, the subset

{(A,B) € Gry(V) x Gry(V) | dim(A + B) = m} (4.2)

of Gri(V) x Gri(V) is locally closed, and that the maps defined on that set mapping (A, B) to
A+ B € Gry(V) (resp. to AN B € Griy—m(V)) are regular. Moreover, for any n,k > 0, the
following map is also regular:

Gry(F,) = Gry(F,), A o(A).
Let r = |V(Q)], say V(Q) ={1,...,r}. We define the following two quasi-projective varieties:

e o is the variety of ordered tuples (Mg, ..., \,) of distinct elements of F,. It is a non-empty
Zariski open subset of F;, hence it is Zariski dense and its dimension is r = [V(Q)|.

e 3¢ is the (locally closed) subspace of Grdg(l)(FZ) X -+ X Grgg(r) (FZ) consisting of those tu-
ples (Vi,...,V;) of subspaces ofﬁn of dimensions dg(1),...,dgo(r) which together span F; and
such that dim (V; N o (V})) = |Q(4, j)| for all 7, j.

Sending a pair ((A1,..., ), (Vi,...,V;)) € Do X 3¢ to the diagonalizable matrix M with eigen-
values A1, ..., A\ and corresponding eigenspaces V1, ..., V,, we obtain a regular map

Yo X 30 — 2Inn(Fp) (4.3)

whose image is exactly .’fdlag by Proposition 4.2. In particular, .’{gag is a constructible subset
of M,,(F,) by Chevalley’s theorem The group Aut(Q) consisting of automorphisms of the quiver,
i.e., of permutations of the vertlces which preserve edge multiplicities, acts simply trans1t1vely on
each fiber above a point of %Q % _ Moreover, the Frobenius automorphism acts on the sets % '8 Yo,
30, and the map from Equation (4.3) is o-equivariant.

To compute the dimension of 3¢, we use the following lemma:

5Be aware that this is not a quiver variety or a quiver Grassmannian in the usual sense.

10



Lemma 4.3. Letr > 1. The map p: GL,(F,) — GL,(F,) given by p(E) == E~'o"(E) is étale and
surjective. Moreover, GLy(F,r) acts simply transitively on each fiber by left multiplication.

Proof. More generally, for any A € GL,(F,), consider the map ¢ ,: GL,(F,) — GL,(F,) given
by p4(E) = E71Ac"(E). As p = 0 in F,, the differential of ¢” is the zero map (at any point);

by the product rule, the differential of g, at a matrix £ € GL,(F,) thus maps a tangent vector
dE € M, (F,) to —E'dEE"'A0c"(E) € M, (F,). Hence, the differential of p4 at every point E
is a linear isomorphism, so g4 is étale. Since domain and target have the same dimension and
GL,,(F,) is irreducible, this implies that g, is dominant for all A. The image of g4 (which is dense,

and constructible by Chevalley’s theorem) then contains a non-empty open subset of 9, (F,), hence
intersects the (dense) image of g; = g. We have an equality p4(E1) = g(FE»2), implying that
A = p(EyE"). We have shown that the map g is surjective.

Finally, we have E~1o"(E) = E'~16"(E') if and only if E’E~! € GL,(F,r), so all non-empty
fibers of g are right GL,,(F,-)-cosets. O

Lemma 4.4.

(a) The space 3¢ is non-empty and has pure dimension >_; do(i)? — >ij 1Q(,§)|?, and the finite
group GL,(IF,) acts transitively on the set of its irreducible components.

(b) Let k € V(Q) with 0 < |Q(k,k)| < dg(k). Consider the locally closed subset 301 < 30
consisting of those tuples (V1,...,V;) € 3g for which Vi;No (Vi) is defined over F),. This subset
has strictly smaller dimension than 3g.

Proof.
(a) The formulas U;; = V; No(V;) and V; == P, Ui; define two inverse regular maps, showing
that 3¢ is isomorphic to the subvariety 3¢ of ILi; Griga,j) (ﬁ;) parametrizing tuples (Ui;); je[r

of subspaces of FZ satisfying the following three conditions: dimU;; = |Q(7,7)| for all 4,5 €
V(Q), @, Uij =F,, and o(D,; Ui;) = @, Uj; for all i € V(Q).
Define the Fj,-vector spaces Cj; = ?Lg(i’j)l and C' = @, ; Cj;. By definition, C' is isomorphic

to FZ. In order to parametrize tuples (U;;)i; € EQ, we consider the surjective regular map

f: ISOm(C,FZ) — {(Uij)i,j ‘ dim Ui]’ = |Q(Z,j)’ and eai,j Ui]’ = FZ}, E— (E(Cij))i,j’

whose fibers are isomorphic to the variety
F =[] GL(Cj;), of dimension » (dimCj;)* = |Q(i, j)[*.
i,9 1,3 1,7
For any E € Isom(C’,FZ), let o(E) be the F,-linear isomorphism obtained as the composition

c’sch FZ s FZ, where o acts on C' and on EZ in the natural way. We have o(®; Ui;) =
@; Uji if and only if p(F) = E~'¢(E) sends @®; Cij to @; Cji, i.e., if and only if p(F) lies in
the irreducible variety

S = H Isom (@ Cij, @ Cji), of dimension Z(Z dim Cij) (Z dim Cji) = Z do(i)%
@ J J ] J @

In other words, 30 = f(p 1(S)). Together with Lemma 4.3, this implies that 39 ~ 3¢9 =
f(p~1(9)) is non-empty and has pure dimension

dim 3o = dim g~ (S) — dim F = dim S — dim F = ng(i)2 - Z 19(i, §)|?
i i,
and that GL,,(F,) acts transitively on the set of its irreducible components.
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(b) We reason as in (a). In terms of the notation above, the condition o(Ugr) = Uy, means
that g(F) must send Cy to itself, so S must be replaced by the subset S’ = {4 € S |
A(Cyr) = Cki}, and the claim reduces to showing that dim S’ < dimS. We can describe S
as the subset of the vector space Hom(Chy, Ckr) X [1(; )£ (k1) Hom(Cij, @ Cjri) € Hom(C, C)
formed of those endomorphisms which are 1nvert1ble so S’ has the same dimension as that
vector space, namely

dimS" = |Q(k, k) + > [Q(i, )| - do(d)
(i) (k.K)
= |Q(k, K)* = |Q(k, k)| - do(k +Z|Q i, 5)| - do(9)

= —|Q(k, k)| - (do(k) — |Q(k, k)]) ng

< ng(i)2 = dim S. O

Corollary 4.5. The subset %dlag C M, (Fp) is constructible, of pure dimension

dim X = [V(Q)|+ Y doi)?— Y |96, )

i€V (Q) 1,j€EV(Q)

Proof. Since every fiber of the surjection g X 30 — %dlag is finite (of size |Aut(Q)l), %dlag is
equidimensional and

dim X5% = dim)o + dim 3¢ LT V(Q)I+>_do(i)* = 319G, 5)I* O

4.2. The octopus has maximal dimension

Corollary 4.5 and Equation (4.1) imply that the dimension of X918 is the maximal dimension of %dlag

over quivers Q € Bal,, and give an explicit formula for the dimension of %d’ag in terms of the quiver Q.

We shall now compute this maximal dimension and describe the corresponding optimal quivers.

Proposition 4.6. Let n > 1, and let [n/3] be the (uniquely defined) integer closest to n/3. Then:

n2
— 1.
3 +

The mazimum is reached by the following quiver with [n/3] + 1 vertices, which we call the octopus
quiver (with n edges) and denote by Oy, :

max dim %dlag

QeBal,

n —2[n/3]

()
AN

where the number on the top loop means that there are n — 2[n/3] parallel loops from the central
vertex to itself. Moreover, up to isomorphism:

o When n & {2,4}, there are no other quivers in Bal,, mazimizing dim %dlag,

12



o When n =2, there is a single additional optimal (non-connected) quiver, namely O1 U Oy :
GLEN N

e When n =4, there is a single additional optimal quiver, which we call the dumbbell quiver:
o)

Proof. Corollary 4.5 gives a formula for dim }Zgag, reducing the proposition to a purely combinatorial
statement. The proposed quivers do reach the proposed maximum, establishing the lower bound
MAaX QeBal,, dim %émg > |n?/3] + 1. We prove by induction on n that this is indeed the maximum,
and that the quivers reaching that maximum are exactly the proposed ones. We leave aside the
cases n = 1 and n = 2, which are easily checked. Let m > 2, and assume that for all n’ < n
and for all Q" € Bal,s we have dim .’fd’ag < [n?/3] +1. We consider a quiver Q € Bal, satisfying
dim X3 > |n?/3] + 1.

We first show that Q is connected. For this, notice that dim %gag is additive with respect to unions
of vertex-disjoint quivers. By the induction hypothesis and since the function n(n) = |n?/3] + 1 is
strictly superadditive on positive integers with the single exception of the equality n(1)+n(1) = n(2),
we cannot reach or beat [n?/3] + 1 if there are at least two connected components (recall that we
have assumed n > 2).

Now, let ¢ be an integer, and consider a subquiver C' C Q which is a union of any number of
vertex-disjoint cycles whose lengths sum to ¢ (for example, C' can be a single /-cycle), thus consisting
of £ vertices and ¢ edges. Removing from the quiver Q the edges of C' and the vertices which have
become isolated, we obtain a balanced quiver Q \ C' with n — ¢ edges. We have, by Corollary 4.5:

dim X3 — dim X3% = |{i € V(O) [do(i) = 1}] + > [do(i)* — (da(i) — 1)?]
eV (C)

vertices which have become isolated

- X 1eG.A)P - (1965 - 1)’]

(i—j)eC
={ie V(@) |do() =1} +2 > do(i)—2 Y  [QGJ).  (44)
eV (C) (i—j)eC
By hypothesis, dim %gag > |n?/3] + 1. By the induction hypothesis, dim %gig <|(n—40)>2/3] +1.

Therefore:

diag diag
dim Z{ —dimX o\C >

2 2 2 2 2 2
{nJ_{(n—E)JZn—Z_n—QnE—i—E _ 2l -7 -2 (4.5)
3 3 3 3 3

We clearly have |{i € V(C) | dg(i) = 1}| < L. If |[{i € V(C) | dg(i) = 1}| = ¥, then C is a union
of connected components of Q, hence @ = C' as Q is connected (in particular, C is a single cycle in
this case), so £ = r = n, but then dim %dQlag = n is less than [n?/3] + 1 since n > 2. Therefore, we
actually have |{i € V(C) | dg(i) = 1}| < ¢ — 1, and so:

{i e V(O) |do(i) =1} +2 > do(i)—2 > Q)| <({—1)+2n—-20=2n——1. (4.6)
eV (0) (i—j)eC

Combining Equations (4.4) to (4.6), we must then have:

ol — 02 —2

2n—0—1>
3
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Multiplying by 3 and rearranging, this becomes

(6 —2n)((—3) > 1,
<0

which is only possible if ¢ < 2. We have thus shown:
There is no union of vertex-disjoint cycles of @ whose lengths sum to 3 or more. (C)

Since Q is balanced, it can be written as a union of (not necessarily disjoint) cycles. By (C), only
1-cycles (i.e., loops) and 2-cycles can occur. In particular, for any two vertices ¢ # j, the number of
edges i — j equals the number of edges j — i. We use the notation i <= j as a shortcut for a edges
i — j and « edges j — i (this still counts as 2« edges!). By (C), there can be at most two vertices
with loops. We distinguish two cases:

Case 1: There are two vertices ¢, with loops.
Then, (C) implies that any 2-cycle contains both i and j. As Q is connected, ¢ and j are the
only vertices and Q looks as follows:

aCz%jgﬁ

where a+ 2y +  =n and «, 5,y > 1 (this is only possible if n > 4). We have
dim X5 = 2+(a+7) 2+ (B+7)? —a?— 272 - 52 = 242y(a+f) = 24+27(n—27) = —4y*+2ny+2.

This polynomial in 7 reaches its real maximum at v = % with maximal value %2 + 2, which is
strictly smaller than [n?/3] + 1 as soon as n > 5, contradicting the hypothesis. For n = 4, the

only possibility is @« = 8 = v = 1, corresponding to the dumbbell quiver.

Case 2: There is at most one vertex with loops.
If there is a vertex ¢ with loops, then all 2-cycles must contain the vertex i according to (C).
Otherwise, (C) still implies that any two 2-cycles must share a vertex, and since there cannot
be a 3-cycle, all 2-cycles then share some common vertex 7.9 Either way, since Q is connected,
we see that Q is of the following form:

with v >0, a1,...,,-1 > 1, and 7+ 2, a; = n. We then have
dim%‘sag =r4+(n—30)2 4+ 0l —(n—2Y; )* =23 af = r+2n > 0 —3(X; ) >, ol
Let S =3 ,0a;. Wehave S >r —1and Y ;a? > S, and thus:

dim X5 < (S +1) +2nS — 35% — § = —35% + 205 + 1.

5Say i <+ j and i <> k are two 2-cycles sharing a vertex 4, with j # k. Any 2-cycle not containing the same vertex 4
would need to be j <+ k. But then, @ would contain the 3-cycle i — j — k — 4, contradicting (C).
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This upper bound is a quadratic polynomial in .S whose real maximum is at g, thus reaching
its integer maximum exactly when S = [%], in which case this evaluates precisely to [n?/3]+1.
As, by hypothesis, we have dim %‘Sag > LnQ /3] +1, all inequalities above must be equalities. In
particular, we have S =r—1soa; =...=ar,—1 =1,and S =[n/3]sor=S5+1=[n/3] + 1.
The quiver @ is then precisely the octopus quiver. O

The following subsections are dedicated to describing the irreducible components of %3ag for the
quivers Q maximizing the dimension.
4.3. The special case n =2

In the case n = 2, Proposition 4.6 shows that there are two isomorphism classes of quivers Q € Baly
for which dim %gag reaches the maximal value 2, namely:

Oy= 1722 and 01U(91=Cl 23
Proposition 4.7. The two-dimensional set %%ijg U Z{gfﬁol has exactly p? irreducible components,

which are all fized by o.

Proof. We let X = %gsg N f{gfiol. Note that Y := Do, = Do,u0, is the space of pairs of distinct
elements of F,. An element of Z = 30, U 30,10, is a pair (Vi,V3) of distinct one-dimensional
subspaces of Ff, such that either o(V1) = Va and o(V2) = Vi (for 30,), or o(V1) = Vi and o(Va) = Va
(for 30,00, ); this can be summed up by saying that the unordered pair {V1, Va2} is o-invariant. We
have already counted such unordered pairs in Theorem 3.4 (cf. the bijection of Lemma 3.2), so we
know that there are p22_2 = p? such pairs. (In this case, it is easier to distinguish between the two
cases, giving %(p2 —-p)+ %(p2 +p) = p%.) Thus, the set Z has size 2p?.

Both quivers have automorphism group Aut(Q) isomorphic to Z/2Z, corresponding to the per-
mutation of the vertices 1 and 2. Thus, the maps of Equation (4.3) combine into a surjective regular
o-equivariant map Y x Z — X, whose fibers have size 2. Since Y is irreducible, the space ¥ x Z
has 2p? irreducible components, over which Z/27Z acts freely (by swapping coordinates of both pairs),
and moreover the Z/27Z-orbits are unions of o-orbits (they form a single orbit for components com-
ing from 3p,, and two orbits for components coming from 3¢,0,). This implies that X has p?
irreducible components, all of which are fixed by o. O

4.4. A tool to prove irreducibility

We will repeatedly make use of the following lemma to prove the irreducibility of a variety:

Lemma 4.8. Let f: A — B be a regular map between varieties. Assume that A is non-empty and
has pure dimension d. Let Bi,...,Bs be locally closed subvarieties of B with B = | [;_; B; and for
every x € B, let F, be a variety such that there is an injective reqular map ¢.: f~1(x) — Fj.
Assume that By is irreducible, that F, is irreducible for all x € By, and that

Vr € By, dimF, +dimB; <d,
Vie{2,...,s}, VrxeB;, dimkF,+dimB;<d.

Then, A is irreducible.

Proof. The assumptions imply that dim f~'(B;) < d for i = 2,...,s. Hence, the (d-dimensional)
irreducible components of A are in bijection with those of A\ Ui_, f~1(B;). We can thus assume
without loss of generality that s = 1, hence B = Bj.
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Consider any irreducible component C' of A. For generic z € f(C), we have
d = dim C < dim(f~(x) N C) + dim f(C) < dim F, + dim B; < d,

so all inequalities have to be equalities: dim F, +dim By = d, the set f(C) is dense in B = B; (recall
that By is irreducible), and the set o, (f~!(x) N C) (which is constructible by Chevalley’s theorem)
is dense in F,, (recall that F}, is irreducible), hence contains a non-empty open subset of F.

This implies that, for any two irreducible components C' and C’ of A and for generic z € B, the
set oo (f~Hz)NCNC") = 0 (f~Hz)NC) N (f~1(x)NC’) contains a non-empty open subset of F.
We have shown that the fibers of the restricted map ficner: C'N C’ — B generically have dimension
dim F, (in particular, that restricted map is dominant), so dim(C N C’) = dim F, + dim B; = d,
which implies C' = C". ]

4.5. The general case (the octopus variety)

Let n > 3, and let Q be the octopus quiver O, (defined in Proposition 4.6). In this subsection,
we show that 3o and %dglag are irreducible (Proposition 4.11). For this purpose, we will need the
following stratification of the Grassmannian:

Stratification of the Grassmannian. Let 0 < a <n. We partition Gr, (FZ) as follows
Gra(FZ) = |_| Tab

0<b<min(a,n—a)

where €, is the subset of Gra(FZ) consisting of those a-dimensional subspaces V' C FZ such that
dim(o(V) + o~ Y(V)) = a + b, or equivalently dim(c(V)No~}(V)) =a —b.

Lemma 4.9. For any 0 < b < min(a,n — a), the strata T, satisfy the following properties:
(a) ZTqp is locally closed.
(b) Ty is non-empty with pure dimension b(n — b).
(¢) If b> 0, then Tqy is irreducible.

(If n # 2 (mod 3), we will only need the “trivial” special case b = min(a,n — a) of point (c).)

Proof. Let X be the set of pairs (V, V') of a-dimensional subspaces of EZ with dim(V + V') =a+b

=N

(equivalently, dim(V' N'V’) = a —b). The subset X C Gr,(F,) x Gra(FZ) is locally closed, cf.
Equation (4.2).

(a) Since dim(o(V) + o~ 1(V)) = dim(c?(V) + V), the set T, is locally closed as the pullback
of X under the regular map V > (V,0%(V)).

(b) We use a similar strategy as in the proof of Lemma 4.4. First note that ¥, is isomorphic to
the variety T, of those pairs (V, V') € X satisfying o?(V) = V.
Let Cq == Ff,, Cy = F;_b, Cy = Ff,, Cy = Fz_a_b, and C == C1®Co®C3®dCy. We parametrize
pairs (V, V') € X via the regular map
f:Isom(C,F)) — X, E s (E(C1 @ Cy), E(Cy @ C3)).

This map is surjective and its fibers are isomorphic to the variety

F = {E S GL(C) ‘ E(Cl D CQ) =(C1®Cy and E(CQ D 03) =Cy® Cg}
= {E € GL(C) ‘ E(Cl) CC1®Cyand E(CQ) = (9 and E(Cg) C Oy 03}
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of dimension

dim F' = dim C - dim(Cy @ C3) + (dim 02)2 + dim C5 - dim(Cy & C3) + dim Cy - dim C
=ba+(a—b)?+bat(n—a—Dbn
=a®+ (n—a)n —b(n —b).
(That a generic linear endomorphism E: C' — C such that E(C}) C C; @ Cy, E(Cy) C Cy and

E(Cs) C Cy @ (5 satisfies E(Cs) = Cy and is invertible follows from the fact that F is Zariski
open in the vector space of such endomorphisms, and is non-empty as it contains the identity.)

Let E € Isom(C,FZ) and let (V, V') = f(E). We have 0?(V) = V' if and only if the automor-
phism p(FE) = E~102(E) € GL(C) (with ¢%(E) defined analogously to o(E) in the proof of
Lemma 4.4) lies in the irreducible variety

S ={AeGL(C) | A(C1L & Cy) = Cy® Cs3}
of dimension
dim S = dim(Cy @ Cy) - dim(Cy ® C3) + dim(C3 & Cy) - dim C = a® + (n — a)n.
(As above, generic invertibility comes from the fact that S is non-empty, as it contains the
invertible map C1 @ Co @ C3® Cy — C1 & Co © C3 @ Cy, (2, y, z,w) — (2,y,z,w).)
By Lemma 4.3, ©1(9) is non-empty of pure dimension dim S = a? + (n — a)n. In particular,

Tap =~ Tap = f(p71(S)) is non-empty of pure dimension

dimp1(S) —dim F = a® + (n — a)n — a* — (n — a)n + b(n — b) = b(n — b).

We use downward induction on a. (The case a = n is vacuous.) The case b = min(a,n —
a) is clear since by (b), T, is then a subvariety of dimension a(n — a) of the irreducible
variety Gra(F;) of dimension a(n — a), hence it is dense, hence itself irreducible. We can
therefore assume that 0 < b < min(a,n — a).

We are going to apply Lemma 4.8 to the regular map

f: {Ia,b — |_| (zaer,c = Graer(F;)
0<c<min(a+b, n—a—b)

sending V to W = 0?(V) + V. For any W € T,ip,, the fiber f~1(W) is contained in the
set of a-dimensional subspaces V' of the (a + b — c)-dimensional vector space W No~2(W). In
particular, the fiber is empty unless a < a+b— ¢, so ¢ < b.

Let 0 < ¢ < min(b, n —a —b) and W € T44p .. The fiber f~1(W) embeds into the irreducible
variety Gry(W No=2(W)) ~ Gra(F;+b_c) and we have

dim T, — dim Gro(Fp ) — dim To 44,0

@b(n —b)—alb—c)—c(n—rc)

=0b-c)n—a—-b—c).
The right-hand side is positive for all ¢ except ¢ = min(b,n — a — b), for which it is zero. For

this value of ¢, the assumption 0 < b < min(a,n —a) implies that a+b > a and ¢ > 0, s0 Tgip ¢
is irreducible by the induction hypothesis.

The claim follows by applying Lemma 4.8 to the regular map f. O
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Remark 4.10. For b = 0, the variety %, consists of those a-dimensional subspaces V' C FZ such

that o(V) = o~ %(V), or, equivalently, of the finitely many a-dimensional subspaces of EZ defined
over 2. In particular, T, is not irreducible unless a € {0, n}.

Proposition 4.11. Let n > 3 and k = [n/3]. Let Q = O, be the octopus quiver with k + 1 vertices
and n edges. Then, the sets 3o and %(Sag are irreducible.

n — 2k

()

1//’\\\k

2 k—1

Proof. By Lemma 4.4(a), we have
dim3o = > do(i)? = > 1930, j)|* = (n — k)* + k — (n— 2k)* — 2k = k(2n — 3k — 1).
% 9,

Points in 3¢ correspond to tuples (Vp, Vi, ..., Vi) of subspaces of ﬁ; of respective dimensions n —
k,1,...,1 together spanning FZ such that dim(VoNo(Vp)) = n—2k and Vi,..., Vi C o(Vy)No—1(Vp)
and V; # o(V;) for all 4,5 € {1,...,k}. We are going to apply Lemma 4.8 to the regular map

f:30— |_| kb = Grn—k(FZ)

0<b<min(n—k,k)

sending (Vp, Vi1, ..., Vi) to V.

Let 0 < b < min(n — k, k) and consider an arbitrary Vo € T, . The fiber f~1(Vp) consists of
tuples (V1,..., V) of linearly independent one-dimensional subspaces of the (n — k — b)-dimensional
vector space o(Vp) N o~ 1(Vy). In particular, the fiber is empty unless k < n — k — b, i.e., b <
n — 2k. We now assume that b < n — 2k. The fiber f~1(Vj) embeds into the irreducible variety

(P(O’(Vb) N 0*1(%))>k ~ (P(ﬁ;fk*b))k, and by Lemma 4.9(b) we have

o k
dim 30 — dim(IP’(FZ b b)) — dim Ty

=k(2n—-3k—1)—k(n—k—b—1)—b(n—1»>)
=(n—2k—-"0)(k—0).
The right-hand side is positive for all b except b = min(n — 2k, k), for which it is zero. For this value

of b, the assumption n > 3 together with the definition k& = [n/3] imply that b > 0, so T,y is

irreducible by Lemma 4.9(c). By Lemma 4.8, the variety 3¢ is irreducible. Since 9)g and 3¢ are

irreducible, so is their product and therefore so is the image %gag. O

4.6. The special case n =4 (the dumbbell variety)

When n = 4, Proposition 4.6 shows that there are two isomorphism classes of quivers Q € Baly
such that dim .’{gag reaches the maximal value 6, namely the octopus quiver Oy (for which %gjg is
irreducible by Proposition 4.11), and the dumbbell quiver Q:

Cre==20)

The goal of this subsection is to prove:
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Proposition 4.12. When Q is the dumbbell quiver, the sets 3o and %33% are irreducible.

By Lemma 4.4(a), the set 3o has pure dimension 4. The points of 3¢ correspond to pairs
V = (V4, V) of two-dimensional subspaces of F;l, such that V; &V, = F;l, and dim(V; No(Vj)) =1 for
each 4,5 € {1,2}. For any V = (1}, V) € 3¢, define the one-dimensional vector spaces

Li(V):=Vino(W) and Ly(V) = Vano(Va),

the three-dimensional vector space
W(V) =V, +o(Va),

and the vector spaces

and
M(V)=UWV)Nnoa(UWV))=WWV)ne(W((V))Na*(W(V)).

Since W (V') has codimension 1 in ?;1,, we have dim U (V) > 2 and dim M (V') > 1. The space W (V)
is not defined over F, as otherwise we would have Vi + Vo C W(V) C F;l,. This implies that
U(V) < W(V) is two-dimensional.

Note that

Li(V)CU(V) and  Ly(V)C o HUWV)). (4.7)

Strategy. Our strategy of proof for Proposition 4.12 is as follows: we show that for a generic
element V' of any irreducible component of 3¢, none of the subspaces Li(V), Lao(V), U(V), M(V)
are defined over IF,,. Disregarding those “exceptional” V' for which any of these subspaces are defined
over ), we show that M (V') is one-dimensional, and that the fibers of the map V' +— M (V') embed
into one-dimensional subvarieties of P!(F,) x P!(F,). Using Newton polygons, we show that these
one-dimensional varieties are generically irreducible. Finally, we conclude using Lemma 4.8.

Lemma 4.13. Consider the regular map
A 39 = B(E,) xB(F,), V= (Li(V),La(V)).

Let F be the closed subset of P(Fﬁ) X P(ﬁ;ﬁ) corresponding to pairs (L1, L) such that at least one
of Ly or Ly is defined over Fp, and let 3 = 30 \ A"} (F)\). Then:

(a) The closed subset \™1(Fy\) of 3¢ is at most three-dimensional.
(b) For any V € 3, we have:

(i) Vi = Li(V) @ o~ Y(Li(V)) for each i € {1,2}.

(i) UV) + o~ Y UV)) + o~ 2(U(V)) =F,

-
(iii) The vector space M (V') is one-dimensional.

Proof.

(a) As both cases are symmetric, we can focus on the preimage of the space of pairs where L; is
defined over [F,,. By Lemma 4.4(b), this preimage has dimension strictly less than dim 3¢ = 4.

(b) (i) By definition, V; D L;(V) +o~!(L;(V)). By hypothesis, L;(V) is a one-dimensional space
not defined over F, so it has trivial intersection with o~1(L;(V)), so the right-hand side
is a direct sum and has dimension 2 = dim V;, so the inclusion is an equality.

(ii) Combining (i) with Equation (4.7), we obtain Vi + Vo C U(V)+o Y (U(V))+ o 2(U(V)).
The left-hand side is F; since V' € 3q.
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(iii) From (i), we see that the two-dimensional vector space U(V') is not defined over F,,. Thus,
the vector space M (V') = U(V)No(U(V)) is at most one-dimensional, but it is also at least
one-dimensional since it equals W (V) N ao(W (V) Neo?(W(V)) and dim W (V) = 3. O

Consider the regular map

vi 3p = Gra(F,), Ve UV).

If U = (v,u) is any two-dimensional subspace of Ff;, then Equation (4.7) shows that there is a regular
map

ot ’lJ_l(U) — Pl(Fp) X Pl(Fp), V= ([7’1 : 81], [7’2 : 82])

uniquely characterized by
Li(V) = (riv + s1u) and Ly(V) = (roo Y (v) + sp0 1 (u)). (4.8)

This map @y, is injective as V; = L;(V) & o~ (L;(V)) by Lemma 4.13(b)(i).

Let S be the (dense open) subset of IE‘; consisting of those m € Fj; for which the vectors o*(m) for
1 =0,...,3 are linearly independent, and let g: S — ﬁ; be the map sending m to the unique tuple
(coy...,c3) € Ff, satisfying ol(m) = 3, c;o*(m). The map g is regular by Cramer’s rule. Finally, for
any ¢ = (cg,...,c3) € IE‘ , define the following (one-dimensional) closed subset D, C PY(F,) x P1(F,,):

D, = {([rl 2 s1], [r2 : s2]) ’ — cor’fJr Pl clrp+ rbse — 02rf+ Pl 037“117818p+1 + sp+1 p+1 = 0}
(4.9)

Lemma 4.14. Consider the regular map (see Lemma 4.13(b)(iii))

p: 3 = PE,), Ve M(V).

Let F), be the closed (finite) subset of IP’(F;) corresponding to subspaces M which are defined over Ty,
and let 3% = 3o \ p~H(FL).

(a) If M € F,, then the closed subset u='(M) of 3 is at most three-dimensional.

(b) If M = (m) € P(F ) \ F., then the closed subset p~*(M) of 3% is at most one-dimensional.
More specifically, zfu Y(M) is non-empty, then m lies in S and there is an injective reqular
map (M) < Dy (where Dy is as in Equation (4.9)).

Proof. The proofs of (a) and (b) are very similar, the main difference being that for fixed M, in (b),
there is only one possible vector space U(V'), whereas in (a), there is a two-dimensional set of possible
vector spaces U(V).

(a) Since M is defined over F), we pick a o-invariant generator m € (M NF;)\ {0} of M. For
any V € p~ (M), the two- d1mens10nal vector space U(V') contains M by definition. As {U €

Gra(F 4) | M CU} ~ IP’( p/M ) is two-dimensional, it suffices to show that the image of the
injective map @ i v HU) — PY(F,) x PL(F,) is at most one-dimensional for any U = (m, u)
containing M. Let U = (m, u) be a two-dimensional subspace of Fj; containing M, and assume
that v=1(U) is non-empty.

By Lemma 4.13(b)(ii), this implies Ff, =U+oYU)+072U) = o 2((m,u,0(u),0?(u))),
so the vectors m,u,o(u),o?(u) form a basis of F;. Write o3(u) = Y2 ciot(u) 4 cgm with
o, .. .,c3 € Fp.
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For any V € v~ 1(U), letting ¢m (V) = ([r1 : s1], [r2 : s2]), since o(V1) N V4 # 0, we must have
a3(V1) N a?(Vz) # 0, where according to Lemma 4.13(b)(i) and Equation (4.8):

3 3 2 2
(V1) = o*(Li(V)) + o*(Li(V)) = (T m+ s o®(uw), r7"m+ ] 0®(u))
= (( fs + 03371’3)m + cos’fgu + clsll’ga(u) + czs’l’saZ(u), r{’Zm + 811)202(’&»,

o2(V3) = 0X(La(V)) + 0(La(V)) = (' m + 5 o(w),  rEm + shu).

Writing everything in terms of the basis (m,u, o (u),o?(u)), this means that the matrix

3 3 3 3 3
p D p p D
ry + (23381 cpS; €187 62821

p
51

must be singular, so its determinant must vanish. This determinant is a non-zero polynomial in

3 2 2
71, 81,72, 52 (it always involves the summand r} s} sh TP ), which shows that the image of ¢, 4

in P}(F,) x P1(F,) is indeed at most one-dimensional.

Let M = (m) € P(Fﬁ) \F,. If u~1 (M) is empty, the claims are clear, so we assume that =1 (M)
is non-empty. For any V € p~' (M), we have U(V) D M (V) + o~ (M(V)) by definition; since
the one-dimensional space M (V') = M is not defined over [F,, and since U (V') is two-dimensional,
we in fact have

U(V)=MV)& o (M(V)) = (m,o" " (m)),
so p~H (M) = v~ (U) where U = (m, o~ (m)).
By Lemma 4.13(b)(ii), and because v~1(U) is non-empty, we have F;l) =U+o" Y (U)+072(U) =
o3 ((m,a(m),o?(m),a3(m))), so the vectors m, o (m), c?(m), o3(m) form a basis of F;l,, i.e., m
lies in S. Let (co,...,c3) = g(m) € ﬁ;, so that by definition o*(m) = 323 c;o*(m).

For any V € p~Y(M), letting Om,o-1(m) (V) = ([r1 2 s1], [r2 @ s2]), since o(V1) NV # 0, we must
have o*(V1) N o3(V) # 0, where according to Lemma 4.13(b)(i) and Equation (4.8):

4 4 3 3
o' (V1) = o' (L1(V) + o> (L1(V)) = (1] o'(m) + 57 o*(m), 17 o*(m) + 51 o*(m))
= <c0r:f4m + C1r’1)4a(m) + czr’f402(m) + (037*’174 + s’f4)a3(m), r’l’303(m) + sfgaz(m)),

o*(Va) = 03 (La(V)) + 0*(La(V)) = (r§ 02(m) + s o(m), 15 o(m) + sb m).

Writing everything in terms of the basis (m, o(m), 0?(m), 03(m)), this means that the matrix

4 4 4 4 4
corlf 017‘71’ 621"11’ 037“11” —1—5]1”
3 3
" r?
3 3
s5 b
2 2
D D
52 T2

must be singular, so its determinant

4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2
+ + + + + + + +
—corzf P rg P +017“]f P Tg sg — 027“110 P 5120 P +03r{’ 5217 sg L4 + szl’ P sg P

must vanish. Letting 7: gP’l(Fp) X IP’l(Fp)Q—> PY(F,) x P1(F,) be the bijective regular map
([r1 : s1],[r2 = s2]) = ([r) : U], [rh : sh]), we have shown that the image of the injective

regular map 70 @, 51 pY(M) — P! (Fﬁ) x Pl (ﬁ;) is contained in D¢, . cy) = Dymy- U
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Lemma 4.15. There is a non-empty open subset O' C ﬁ;ﬁ such that, for all ¢ € O, the closed
subset D, C PY(F,) x PL(F,) is irreducible.

Proof. Let f be the following bihomogeneous polynomial in the variables r1, s1, 12, s2, with coefficients
in Fp(co,...,c3):

1 1 _ptl
f= p+1 p+ +cl7“p+ p+1 p+ D+ p+

—CoT rhsy — cord + 637’1313 1y sq
Let L = Fy(co,...,c3). By [Stacks, Lemma 0559], it suffices to prove that the subscheme of P} x P}
defined by f = 0 is irreducible, i.e., that f is irreducible as a bihomogeneous polynomial over L.
We will show this by specializing to ¢g = 0. Assume by contradiction that there are non-constant
bihomogeneous polynomials g, h € L[ry, 1,72, s2] such that f = gh. Let v be an extension of the
co-adic valuation on Fpy(co,...,c3) to L and let p C O C L be the corresponding maximal ideal and
valuation ring. We have O/p = F,(c1,...,c3). Since the coefficients of f lie in O, we can by Gauss’
lemma assume without loss of generality that the coefficients of ¢ and h also lie in O.7
The Newton polygon NP(a) C R? of a bihomogeneous polynomial a = > k”rls‘f ’7"252 ' with
coefficients in an integral domain is the convex hull of the points (i,7) € Z>0 Wlth kij # 0. For any
two such polynomials a, b, the Newton polygon NP (ab) is the Minkowski sum of NP(a) and NP(b).
Over O/p =Fp(c1,...,c3), we have

1 1 pt1
(f mod p) = errP sy — corP T b 4 egrls BT 4 B ghT

The Newton polygon of f is the (solid) triangle with corners (0,0), (p+1,0), (p+ 1,p+ 1) and the
Newton polygon of (f mod p) is the (dashed) triangle with corners (0,0), (p+ 1,0), (p+ 1,p).

p+1,p+1)

(p+1,p)

0,0)° (0)  (pr1.0)

The line segment [(0,0), (p+1, p)] contains no integer lattice points other than its endpoints. Since
NP(f mod p) = NP(g mod p) + NP(h mod p) and the corners of the Newton polygons NP (g mod p)
and NP(h mod p) are non-negative integer lattice points, it follows that the Newton polygon of one of
the factors (say NP(g mod p)) contains a translate of that line segment. Moreover, as all other edges
of NP(f mod p) are either horizontal or vertical, so are the other edges of NP(¢g mod p). The only
possibility is that NP(g mod p) = NP(f mod p), and then NP(g) O NP(g mod p) = NP(f mod p).

We have NP(f) = NP(g) + NP(h), but the triangle NP(f) does not contain any proper translate
of NP(f mod p) € NP(g), so NP(h) = {(0,0)}, i.e., h is a monomial of the form ks¢s§. Clearly, such
a monomial can only divide f if d = e = 0, so h must be constant. O

Corollary 4.16. There is a dense open subset O of IP’(F;) such that for oll M € O, there is an
injective regular map from the fiber p=1(M) to a one-dimensional irreducible variety.

"Let a and b be the smallest valuations of coefficients of g and h, respectively. Considering the lexicographically
minimal monomials whose coefficients have these valuations and expanding the product, one can see that some coeffi-
cient of gh has valuation a + b. Since all coefficients of f = gh lie in O, this means that a + b > 0. Dividing g by an
element of valuation a and multiplying h by the same element, we can ensure that the coefficients of g and h lie in O.
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Proof. All fibers of the map g are finite since they are cut out by the non-trivial polynomial equations
0 .

mb = 3 Cimfl in the coordinates m1,...,m4 of m. Since dimS = 4 = dimFﬁ and F; is
irreducible, this implies that ¢ is dominant. We have seen in Lemma 4.14(b) that for any m € S
(in particular, (m) is not defined over F,), there is an injective regular map p~'((m)) — Dy(p)-
(This is obviously true if 4~!((m)) is empty.) Now, let O’ be as in Lemma 4.15, so that D, is
irreducible when g(m) € O'. The claim follows, taking O to be any dense open subset of the image
of g71(0') C S C Eﬁ under the regular map Fj; — ]P’(ﬁ;l,), m ~ (m). (The preimage g~ 1(O') is

non-empty and open since O’ is non-empty and open and ¢ is dominant. Hence, its (constructible)

image in P(IF,) is dense, so it contains a dense open subset.) O

Proof of Proposition 4.12. The set 3o has pure dimension 4 by Lemma 4.4(a). Thus, Lemma 4.13(a)
and Lemma 4.14(a) imply that the inclusions B/é - 3/9 C 3¢ are dense, so it suffices to prove
that 3% is irreducible. For this, fix O as in Corollary 4.16 (which is three-dimensional and whose

complement is at most two-dimensional) and apply Lemma 4.8 to the map u: 35 — P(ﬁi) \ F.
(The fiber p~1(M) embeds in a one-dimensional variety by Lemma 4.14(b), and that variety can be
taken to be irreducible when = € O by Corollary 4.16.) OJ

4.7. Conclusion

Theorem 4.17 (cf. Theorem 1.3). For any finite field Fq O F,,, we have

2 .

p° ifn=2,

(248 00 (Fy)| = e (pym) - g 4 0 (g 2), where 5 (pn) = 12 ifn =4,
1

if n ¢ {2,4).

Proof. We have seen above that xdiag jg g disjoint union of the finitely many constructible o-invariant
subsets %gag. For all quivers Q with dim %gag < [n?/3], we have ]%(Sag NM,(Fy)| = Op,n(qL”Q/ 3))
by the Schwarz-Zippel bound [LW54, Lemma 1]. Proposition 4.6 classifies the remaining quivers
and shows that they all satisfy dim %gag = [n?/3] + 1. In Propositions 4.7, 4.11 and 4.12, we have
computed the number of irreducible components of %gag in these cases, shown that they are all
fixed by o, and that the total number of irreducible components of dimension |n?/3| + 1 is precisely

cdi#8(p, n). The claim then follows from the Lang-Weil bound [LW54, Theorem 1]. O

5. TOWARDS GENERAL MATRICES COMMUTING WITH THEIR FROBENIUS

In this section, we relate the size of X N9, (F,) to the numbers d(M) defined in Equation (1.1).,
i.e., we prove Proposition 5.8 (which implies Theorem 1.4). To this end, we associate to any matrix
in M,,(F,) a Jordan shape, encoding the sizes of all Jordan blocks associated to the eigenvalues.

Jordan shapes. A Jordan shape of size n is a pair S = (V,e) consisting of a finite set V' and a
map e: V x N — Z>q such that e(i,1) > 1 and e(i,1) > e(3,2) > --- for all ¢ € V and such that
Sicv k=1 €(1, k) = n. An isomorphism between Jordan shapes § = (V,e) and &’ = (V',¢€) is a
bijection 7m: V' — V' such that e(i, k) = ¢/(w(i), k) for all i € V and k > 1. We let JS,, be the (finite)
set of isomorphism classes of Jordan shapes of size n.

Definition 5.1. To any matrix M € 9, (F,), we associate a Jordan shape Sy = (Var, epr) of size n
as follows: the set Vj; consists of the eigenvalues of M for each eigenvalue A and each k& > 1, we let

enr(A k) = dim (ker(M — A)¥ / er(M — A,)" 1),

be the number of Jordan blocks of size at least k for this eigenvalue.
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Two matrices M and M’ are conjugate if and only if they have equal Jordan shapes, i.e., Viy = Vi
and eyp; = epyr. Two matrices having isomorphic Jordan blocks, by contrast, may not have the same
eigenvalues (for instance, M and o(M) always have isomorphic Jordan shapes via 7: A — o(\)).

The space of matrices with a given Jordan shape commuting with their Frobenius. For
any Jordan shape S € JS,,, we define the subset Xs C X of matrices M € 9, (F,) such that Sy ~ S
and such that M commutes with o(M). Clearly,

X= || xs
S€eJSy

Remark 5.2. The sets Xg for § € JS,, defined here are related to the constructible sets %gag for
Q € Bal, defined in Subsection 4.1 as follows: if the shape S = (V, ) corresponds to diagonalizable
matrices (meaning that e(i,2) = 0 for all i« € V'), then Xg is the union of the sets }Igag over all
quivers Q € Bal,, whose vertex set V(Q) is V' and whose degrees satisfy dg(i) = e(i,1) for all i € V.

For any matrix M € 9, (IF,,), denote by Cent M its centralizer and by Cl M its conjugacy class.
Note that Cent M is a subalgebra of M, (F,) and that C1 M is a constructible subset of 90, (F,,).

Now, fix a shape § = (V,e), say with V = {1,...,r}. Let Ys C F; be the (open) subset formed
of tuples A = (A1,...,\;) of distinct elements of Fp. For any A € 9s, we define a matrix As ) of
shape S as follows: Ag ) is the matrix in Jordan normal form having e(i, k) — e(i,k + 1) Jordan
blocks of size k associated to each eigenvalue \;, where we put the Jordan blocks for eigenvalue \;
before those for eigenvalue A; if ¢ < j, and we order blocks with the same eigenvalue by their size.

Lemma 5.3. For any A\, N € 9s, we have Cent As y = Cent Ag y. We denote the corresponding

subalgebra of My, (Fp) by Cent S.

Proof. For any i € {1,...,n}, the generalized eigenspace of Ag ) with eigenvalue \; is also the
generalized eigenspace of Ag y with eigenvalue ;. Denote this common generalized eigenspace
by Gi. We have As v = As v+ (X, — A\;)v for all v € G;. The claim follows since any matrix
commuting with As y or As y» preserves the generalized eigenspaces. O

Remark 5.4. The centralizer Cent S admits an explicit description (some coefficients have to vanish,
and some others must be equal), see [Gan53, Chap. VIII, §2]. Its dimension is Y3j_; Y5 e(i, k)?.
Corollary 5.5. The set of matrices U € GL,(F,) such that As \ commutes with UAg XU_I does
not depend on the choice of A, e s. We denote this closed subset of GL,(F,) by Ds.

Proof. This follows from Lemma 5.3 due to the following equivalences:

As,» commutes with UA XU*1 —= UA; KU*I € Cent S (independent of \)

!

U~1As \U commutes with ASX < U 145, U € Cent S (independent of X) d

Proposition 5.6. For any Jordan shape S = (V,e), the set Xs is a constructible subset of M, (F,)
of dimension |V|+ dim®g — dim Cent S.

Proof. As before, we may assume that V' = {1,...,7}. Let M be a matrix such that we have an
isomorphism 7: & — Sp;. Then, taking A := (7(1),...,7(r)), we see that M must be conjugate
to As . Write M = UAs\U'. Then, M commutes with o(M) = o(U)Ag ;o (U) " if and only
if As ) commutes with (U_la(U))AS,U()\)(U_la(U))_l, i.e., if and only if p(U) = U 'o(U) lies
in ®s. We have shown that the regular map

Vs x 1 (Ds) = Mu(Fy),  (\U) = UAspU™
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has image Xs. In particular, Xg is constructible by Chevalley’s theorem. Each fiber is the union
of |Aut(S)| sets of the form {(\,US) | S € (CentS)*} where (A\,U) € Vs X p 1 (Ds), hence has
dimension dim(Cent §)* = dim Cent S. By Lemma 4.3, we have dim p~!}(Dg) = dimDs. Thus,

dim X5 = dim Qs + dim p 1 (Ds) — dim Cent S = |V| 4 dim D5 — dim Cent S. O

Lemma 5.7. For any matriz M € M, (F,) with Jordan shape Sy; ~ S, the subset Cent M N C1 M

of My (Fp) has pure dimension dim®g — dim Cent S.

Proof. Replacing M by a conjugate, we can assume without loss of generality that M = Ag ) for
some A € )s. Then, the regular map

Ds — M, (F,), U UAs\U !

has image Cent M N Cl M, and each fiber is a left coset of (Cent S)*. O

For any matrix M € 9, (FF,), let

d(M) := (number of distinct eigenvalues of M) + dim(Cent M N Cl1M).

Proposition 5.8. Let S be any Jordan shape of size n and let M € M, (F,) be any matriz with
Sv ~ S. Then, there is an integer ¢ > 1 and a finite field Fyy O F), such that:

(a) |Xs N, (F,)| < ¢ ¢*M) + 0, ,(¢?M=1/2) for all finite fields Fy D F,.
(b) |Xs NI, (Fy)| = c- ¢¥M) 4+ 0, (¢¥M)=1/2) for all finite fields Fy O Ty, .

Proof. By Proposition 5.6 and Lemma 5.7, the constructible set Xs has dimension d(M). The claims
follow from the Lang—Weil bound [LW54, Theorem 1], where ¢ is the number of d(M)-dimensional
irreducible components of Xs, and Iy, is any finite field over which these irreducible components are
all defined. O

Theorem 1.4 follows from Proposition 5.8 by summing over all shapes corresponding to non-dia-
gonalizable matrices.

Remark 5.9. We do not know whether for any n > 3, there is a non-diagonalizable matrix M
for which d(M) is larger than or equal to the exponent [n2/3| + 1 we obtained for diagonalizable
matrices in Theorem 1.3. The largest value which we have been able to obtain for nilpotent matrices
is d(M) = |n(n—1)/3| + 1, for the nilpotent matrix M with one Jordan block of size [n/3] + 1 and
n — [n/3] — 1 Jordan blocks of size 1.

Remark 5.10. Some computations of dim(Cent S N ClAg ) exist in the literature, centered mostly
around the nilpotent case (i.e., 7 =1, A = (0)). In particular, in that case, an upper bound is given
by the dimension of the space of nilpotent matrices in Cent S, that is >4~ e(0, k)% — ¢(0,1), and
equality holds if and only if S is self-large, meaning that e(0,k) — e(0,k + 2) < 1 for all k, i.e., any
two distinct Jordan blocks have sizes differing by at least 2. (In that case, a generic nilpotent matrix
in Cent S automatically has shape S.) We refer to [Pan08] for details concerning this case.

6. MATRICES WITH EIGENSPACES DEFINED OVER [, AND COMMUTING WITH THEIR
FROBENIUS

In this section, in order to illustrate the principle described in Section 5, we deal with a special
case: the set X98/Fr of matrices M € X whose eigenspaces ker(M — AI,,) are all defined over Fp.
Specifically, we determine the asymptotics of |X°%&/F» 09, (F, )|, i.e., we prove Theorem 6.9 (which
is Theorem 1.5).

This case is made accessible by the following observation:
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Lemma 6.1. Let A and B be two commuting matrices in M, (F).
(i) If ker A C ker B, then ker Ak C ker B* for all k > 1.

(ii) If ker(A — \I,) = ker(B — \I,) for all A € Fp, then ker(A — \I,)* = ker(B — \I,,)* for all
A€ F, and k > 1. In particular, the matrices A and B are conjugate.

Proof. We prove (i) by induction on k: the case k = 1 is clear. Let k& > 2 and assume that ker A*~1 C
ker B¥=1. Let 2 € ker A¥. Then, A(z) € ker A¥=! C ker B*~!, so AB*1(z) = B¥1A(z) = 0, so
BF=1(z) € ker A C ker B, so B¥(z) = 0.

For (ii), we reason for a fixed A. Subtracting A\[,, from A and B, we may assume that A\ = 0. The
inclusion ker A¥ C ker B¥ and the reverse inclusion then both follow from (i). O

Corollary 6.2. If M € x%&/Fv then the generalized eigenspaces ker(M — X\ 1,)* of M are all defined
over IFy,.

Proof. The space ker(M — \;I,,)* is defined over F, if and only if ker(M — \I,,)* = ker(a(M) —
o(X\i)I)F. Since M € x°%8/Fr the matrices M — \;I,, and o(M) — o(\;)I,, commute and have equal
kernels (this is the case k = 1). Both inclusions between ker(M — \;I,,)* and ker(o(M) — o(A\)I,)"
then follow from Lemma 6.1(i). O]

For each Jordan shape S = ({1,...,7},¢e), let %gjg'/F" be the subset of X°&/Fr consisting of those

matrices whose Jordan shape is isomorphic to S. Note that X¢8/Fr = | |, IS, %gg'/ "

Proposition 6.3. Let S = ({1,...,7},e) be a Jordan shape, and let A = (A1,...,\) € Ds. The

set %gjg'/F” is a non-empty constructible subset of M,,(IF,) of pure dimension r+dim &g \, where Eg
is the following locally closed subset of My, (Fp):

Esy = {B € Cent S ‘ ker(B — A\ily,) = ker(As y — \ily,) forall 1 < < 7‘}.

Proof. The eigenspace E; := ker(As x — A\ily,) is by definition defined over F),. If M = UAs \U -
then the eigenspace ker(M — \;I,) = U(E;) is defined over F, if and only if (U 1o (U))(E;) = E;.
Letting D be the set of matrices U € Ds such that U(E;) = E; for alli € {1,...,r}, the same proof

as Proposition 5.6 shows that %gig'/ ™ has dimension r + dim D’ — dim Cent S. Thus, it suffices to
prove that €g ) has pure dimension dim ®’s —dim Cent S. Note that €s 5 C Cl Ag x by Lemma 6.1(ii).
The computation is then analogous to the proof of Lemma 5.7. O

We now compute the dimension of &g :

Proposition 6.4. Consider a shape S = ({1,...,r},e) and a tuple A = (A\1,...,\;) € Ds. Then:

(i) We have an isomorphism of varieties €s x ~ [[; €s, z,, where S; = ({z}, (i, k) — e(i,k)) is
the subshape for the eigenvalue \;.

Proof.

(i) Let B € €s . Since B commutes with Ag y, it preserves the generalized eigenspace G, for
each eigenvalue )\;, inducing maps B;: G\, — G, which are easily checked to belong to &g, »,-
We have @;_; G\, = FZ, so B can be reconstructed from the restricted maps B;: Gy, — G,.
We have described two inverse regular maps.

(ii) By (i), we reduce to the case r = 1. Without loss of generality (subtracting A\, from every-
thing), we have A = 0. Then, the claim amounts to Lemma 6.5 below with A = Ag . O
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Lemma 6.5. Let A be a nilpotent endomorphism of an n-dimensional vector space V. Let e (k) =
dim ker A* — dim ker A¥=! and let ¢4 = {B € Cent(A) | ker B = ker A}. Then:

dim €4 =) ea(k)-ea(k+1).
E>1

Proof. We actually show that the linear subspace &, = {B € Cent A | ker B O ker A} has the
announced dimension. Since €4 is an open subset of ¢, (it is defined by the non-vanishing of certain
determinants) and is non-empty (it contains A), it is Zariski dense and the result shall follow.

We reason by induction on the dimension n of V. Since A is nilpotent, im A has strictly smaller
dimension than V, and A := Aliy 4 is a nilpotent endomorphism of im A. Moreover,

e(k) = dim(ker AFnim A) — dim(ker A*~! nim A) = dim A(ker A1) — dim A(ker A¥)
= (dim ker A**! — dimker A) — (dim ker A* — dimker A) = e4(k + 1),

so dim €% = 37 ~5ea(k) - ea(k + 1) by the induction hypothesis. It therefore suffices to show that
the linear map f: ¢y — (’3’Z sending B to its restriction Blim 4 is surjective and that its kernel has
dimension e4(1) - e4(2).

Consider an endomorphism B: im A — im A in (’E/ The fiber f~1(B) consists of those endomor-

phisms B: V — V whose restriction to im A is B, Wthh vanish on ker A, and such that the following
diagram commutes:

We pick a complement C' of im A 4+ ker A in V. Since B € €., restriction to C' defines a bijection
between f~!(B) and the set of linear maps B’: C' — V such that the following diagram commutes:

imA «4_ ¢

3]

1mA«—V

B/

In particular, the fibers are non-empty (the map B o A factors through the surjection A: V — im A),
so f is surjective. Taking B = 0, we see that the kernel of f is isomorphic to the vector space of linear
maps B': C — ker A, of dimension dimker A - dim C. The claim follows since dimker A = e4(1) and

dimC =dimV — dim(im A + ker A) = dimim A + dimker A — dim(im A + ker A)
= dim(im A Nker A) = dim A(ker A%) = dim ker A> — dimker A = e4(2). O

Proposition 6.6. The maximal value of dim f{elg /Fr — =r+y i > k> e(i, k)-e(i,k+1) over shapes S
of size n is [n?/4] + 1, and it is reached eacactly for the following shapes (up to isomorphism,), where
we represent a shape S = ({1,...,r}, e) by the tuple ((e(1,1),e(1,2),...), ..., (e(r,1),...)), omitting
the trailing zeros:

n optimal shapes

2 (1, 1), (1), (1)
3 ((2.1), (L,1L,1), (11D, 1), (1), 1) (1)

2m, m > 2 ((m,m))

2m+1, m > 2 ((m+1m) ((m,m,1))
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Proof. First, we consider only shapes with 7 = 1. Let S = ({1}, e), and let s be such that e(1,s) # 0
and e(1,s+ 1) = 0. We have

. s—1 s—1
dim X35 /Fr = 1 4 > e(lk)e(Lk+1) <1+ e(l,De(lk+1)=1+e(1,1)- (n—e(L,1)),
k=1 k=1
with equality if and only if e(1,1) = e(1,2) = ... = e(1,s — 1). Since e(1,1) is an integer, 1 +

e(1,1) - (n — e(1,1)) has maximal value 1 + [n/2] - [n/2] = 1 + |[n?/4], reached exactly when
e(1,1) € {|n/2], [n/2]}. If nis even, only the shape ((§, §)) gives equality. If n is odd, distinguishing
between the two possible values of e(1, 1) gives the two equality cases with r = 1.

Now, consider the case of a general shape S = ({1,...,7},e). By the case r = 1, we have
. 2
J . . 4 . . d (X1 e(i, k)
r+ e(i,k)-e(i,k+1)= 1+ e(i,k)-e(i,k+1)| < 1+ | —=|].
ICERE >;(;<>< ));( y

However, the function n(n) := [n?/4] + 1 is strictly superadditive except for the equalities n(1) +
n(1) = n(2) and n(1) +n(2) = n(1) +n(1) + (1) = n(3). Therefore, we must have r = 1 if n > 3,
and the cases n € {2,3} are quickly dealt with. O

It remains only to obtain estimates for ]%gg'/ o, (Fq)] when S is one of the optimal shapes
of Proposition 6.6. For this, we are going to need the following two lemmas:

Lemma 6.7. Let a > 1 and let v, € Fyy be non-zero vectors. The number of matrices N € GLq(Fy)
satisfying Nw = o(N)T is ¢*@1) + Op@(qa(“_l)_l) if U and o(W) are linearly independent, and
Op,a(qa(afl)) otherwise.

Proof. Assume first that ¢ and o(w) are linearly independent. Replacing (¥, @) by (o(U)v, UwW) for
an appropriate U € GL4(F,), we can assume without loss of generality that ¢ = €; and W = é
are the first two standard basis vectors. Then, N = o(N)¥ means that the second column of N
is deduced from the first column by applying o. The number of invertible matrices satisfying this
condition is as claimed.

Now, assume that o(w) = A\t for some A € F*. Replacing (¢, @) by (¢(U)v, Uw) for an appropri-
ate matrix U € GL,(F,), we can assume that & = €; and @ = o1 (A\)é;. The condition N = o(N)#
then leaves at most p* = Oy, ,(1) options for the first column of N. O
Lemma 6.8. Let m > 1. For any filtration of linear subspaces 0 = Vi C --- C V = ﬁ;l, where
each Vj, is defined over IF,,, the number of (nilpotent) matrices M € M, (Fq) commuting with o (M)
and such that ker MF = V. for all k € {1,...,s} only depends on q and on the numbers e(k) =
dim(Vy/Vi—1). We denote this count by wq(e(1),...,e(s)) (we omit trailing zeros in the notation,
i.e., this means e(k) =0 for k > s+ 1). Moreover:

(a) For any m > 1, we have wy(m) = 1.
(b) For any a >b>1 with a+b=m, we have wy(a,b) = ¢* + Op45(q?*71).
(¢) For any a > 1 with 2a + 1 = m, we have wy(a,a,1) = ¢ + 0, ,(¢¥+FD1).

Proof. Conjugating by an element of GL,,,(F,), we can assume without loss of generality that each V},
is generated by the first dim V = e(1) + -+ + e(k) standard basis vectors of ;. In particular, this
proves the well-definedness of wy(e(1),...,e(s)).

=m

(a) That e(1) = m implies that V; = F;n, and only the zero matrix satisfies ker M =V, =F, .
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(b) The condition ker M* = Vj, for all k € {1,2} means that M is of the form M = (J4) for
some a X b matrix N of rank b. If M is of this form, then so is o(M) and they automatlcally
commute. The number of such matrices N with coefficients in F, is ¢® + O, .5(¢%*1).

(c) The condition ker M* = Vj for all k € {1,2,3} means that M is of the form M = (§ ]é[ %)

for some invertible a x a matrix N € GL4(F,), some column vector @ € Fg, and some non-
zero column vector v € IFZ If M is of this form, it commutes with o(M) if and only if
No(¥) = o(N)v. Taking @ := o(¥), the claim then follows from Lemma 6.7 by summing over
all possible pairs of vectors 4 € Fy and ¢ € Fg \ {0}, as ¥ and o(w) = o%(¥) are linearly
independent if and only if (7) is not defined over FF,2, which is the generic case. O

Theorem 6.9. For any finite field F, O F),, we have
eig. eig. n? n?
’}: g./Fp mf)jtn([[?q” = g/]Fp(p’n) . qL /4] +1 + Op,n(ql /4J)’
where

8/ (p,2) = L(p+2)(p + 1), ci8/Fr(p, 3) = L(p? + p+ 1)(p* + 70 + 6p* + 6p + 12),

e /Fp (p,n) = ( 7;2) if n > 4 is even,
n
P

& /T (p n) = (Ln7/l2j>p + (Ln?;% >p . <M{21>p if n > 5 is odd.

Proof. For any Jordan shape S which is not listed in Proposition 6.6, we have dim %elg /Fp < |n?/4]
and therefore ]%gg /A M, (Fq)| = Opn(q [n*/41) by the SchwarzZippel bound [LW54, Lemma 1].
Now, let S = (V,e) be one of the Jordan shapes listed in Proposition 6.6. To construct a
matrix M € Z{Zig’/ "> we choose its |V| (distinct) eigenvalues A; and the corresponding general-
ized eigenspaces G; of dimension d(i) = Y ;> e(i, k) for all i (which must be defined over [, by

Corollary 6.2), modulo the automorphisms of S. There are ¢Vl + Op,n(qw‘_l) choices for the eigen-
values and |GLy,(Fp)|/ [Licv |GLgGs) (Fp)| choices for the generalized eigenspaces (as one shows us-
ing the orbit-stabilizer theorem). For each i, we then need to choose the filtration of subspaces
Vik = ker(M — Ail,)* (each defined over F,), satisfying 0 = V;o C --- C Vi, = G;, with
dim(V; . /Vir—1) = e(i,k). The group GLg;(FFp) acts transitively on such flags. Describing the
stabilizer of a given flag (by induction on s;) and using the orbit-stabilizer theorem, one shows that
the number of such flags for each 7 is

|GL(i) (Fp)|
Hk>1 |GL6 (i k)( )‘ Hk>l>1pe(z,k)~e(z,l)
Finally, we need to choose for each i the restriction of M — \;I,, to the generalized eigenspace G;.

We estimated the number wg(e(i, 1), e(4,2),...,e(i,s;)) of choices for this restriction in Lemma 6.8.
For any Jordan shape S = (V,e), we then obtam

[GLA(Ey)| - (g + Opn(d"'1) wy(e(i, 1), e(0,2), ... ei,s))
|Aut(S)] o s |GLe(i 1) (Fp)| - Hk>121pe(z k)-e(i,))

eig./IF
X555 N M, (F,)| =

The claim follows by summing over all the shapes listed in Proposition 6.6 and using the formulas
given in Lemma 6.8. O
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