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Abstract. We consider a variant of the ring of components of Hurwitz spaces introduced by Ellen-
berg, Venkatesh and Westerland. By focusing on Hurwitz spaces classifying covers of the projective
line, the resulting ring of components is commutative, which lets us study it from the point of view
of algebraic geometry and relate its geometric properties to the numerical invariants involved in our
previously obtained asymptotic counts. Specifically, we describe a stratification of the prime spectrum
of the ring of components, and we compute the dimensions and degrees of the strata. Using the
stratification, we give a complete description of the spectrum in some cases.
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1. Introduction and main results

For the whole article, we fix a finite group G, a nonempty set D of nontrivial conjugacy classes of G,
a map ξ : D → Z>0 (attributing a multiplicity to each conjugacy class γ ∈ D), and a field k whose
characteristic does not divide the order |G| of the group G.

1.1. Context

In [EVW16], Ellenberg, Venkatesh and Westerland introduced the ring of components of Hurwitz
spaces, a graded algebra whose elements are linear combinations of connected components of Hurwitz
spaces parametrizing marked G-covers1 of the affine line. The grading of that ring reflects the number
of branch points of the covers parametrized by each component, and the multiplicative structure is
induced by a geometric “concatenation” operation.

The definition of that ring is motivated by the fact that its Hilbert function is tightly related to
the asymptotic behavior of the cohomology of Hurwitz spaces, which is in turn related (using the

∗Universität Paderborn, Fakultät EIM, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany.
Email: bseguin@math.upb.de.

1Here, a marked G-cover is a finite branched cover (not necessarily connected) with a marked point in an unramified
fiber, equipped with an action of G on the cover inducing simply transitive actions of G on each unramified fiber.
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Grothendieck–Lefschetz trace formula) to the count of Fq-points of Hurwitz spaces and hence to the
distribution of field extensions of Fq(T ) with Galois group isomorphic to G, when q is large and coprime
to |G|. In [ETW17], this approach was used to obtain an upper bound consistent with the variant of
Malle’s conjecture for function fields over finite fields.

In [Seg24], we have extended some of the counting results of [EVW16]. For instance, we have
studied the analogous ring of components of Hurwitz spaces of marked G-covers of the projective line.
That ring is a commutative graded finitely generated algebra, and the growth of its Hilbert function
is related to geometric invariants of its spectrum. This observation was the starting point for a more
systematic study of the ring of components from the point of view of algebraic geometry.

1.2. Main results

In Section 2, we define the ring of components R (Definition 2.7), which is a finitely generated com-
mutative graded k-algebra. We then introduce its prime spectrum SpecR, which we call the variety of
components (Definition 2.8). In Section 3, we define subsets γ(H) of SpecR (Definition 3.4), indexed
by subgroups H of G, and we prove that they form a stratification of the variety of components:

Theorem 1.1. The locally closed subsets γ(H) form a stratification of SpecR:

SpecR =
⊔
H⊆G

γ(H).

This result, which is a particular case of the more general Theorem 3.9, has the following conse-
quence: in order to describe the variety of components fully, it suffices to describe each stratum γ(H).
Using the counting results of [Seg24], we compute in Section 5 the Krull dimension of the stratum γ(H)
corresponding to a subgroup H of G. More precisely, we relate it to a numerical invariant defined
in [Seg24], the splitting number Ω(DH) (Definition 2.12):

Theorem 1.2. We have dimKrull γ(H) = Ω(DH) + 1.

In Subsection 5.3, we discuss further connections between group-theoretic and geometric invariants
by relating the degree of the stratum γ(H), seen as embedded in projective space, to (a quotient of)
the second homology group of H.

In Section 6, we approach the variety of components more directly by describing the strata in
Theorem 6.16 and its coordinate-based variant Theorem 6.20. However, our description relies on
strong assumptions on the ring of components. We do not reproduce the statement here as it uses a
lot of terminology. This result applies in particular to the classical situation where G is a symmetric
group and D contains only the conjugacy class of transpositions. In that case, Theorem 6.21 gives a
full description of the variety of components and of its stratification.

1.3. Outline

This article is organized as follows:

• In Section 2, we define notation and terminology used throughout the article, notably the ring
of components (Definition 2.7) and its associated variety (Definition 2.8) which are our main
objects of study.

• In Section 3, we associate to each subgroup H of G a subring RH and four ideals IH , I∗
H ,

JH , J∗
H of the ring of components (Definition 3.1). We use these to define the strata γ(H)

(Definition 3.4). We then prove Theorem 3.9, which is the general form of the stratification of
the variety of components (Theorem 1.1).

• In Section 4, we prove Theorem 4.1. This technical result, which is a weak asymptotic form of
reducedness for the ring of components R, is needed for the proof of Theorem 1.2.
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• In Section 5, we compute the Krull dimension of each stratum γ(H) (Theorem 1.2). In Subsec-
tion 5.3, we also compute the degree of γ(H) in some cases. The proofs rely on the asymptotic
counting results from [Seg24].

• In Section 6, we prove Theorems 6.16 and 6.20, which give complete descriptions of the variety
of components in some cases. We apply these results to the classical case of symmetric groups
in Subsection 6.5.
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2. Definitions and preliminaries

Recall that we have fixed a finite group G, a set D of nontrivial conjugacy classes of G, and a
map ξ : D → Z>0. Additionally, we define the set c :=

⊔
γ∈D γ and the integer |ξ| :=

∑
γ∈D ξ(γ).

2.1. The monoid of components

We briefly recall the definition of the monoid of components CompP1(C)(G, D, ξ) (cf. [Seg23, Defini-
tion 3.4.4] and [Seg24, Definition 2.6]). First, we define the braid group Bn by its presentation:

Definition 2.1. The Artin braid group Bn on n strands is defined by the following presentation:

Bn :=
〈
σ1, σ2, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi if |i− j| > 1
σiσi+1σi = σi+1σiσi+1 if i ∈ {1, . . . , n− 2}

〉
.

Definition 2.2. The Hurwitz action of Bn on the set Gn of n-tuples of elements of G is the (well-
defined) action for which the generator σi ∈ Bn acts on a tuple g = (g1, . . . , gn) ∈ Gn as follows:

σi.
(
g1, . . . , gi−1, gi, gi+1, gi+2, . . . , gn

)
=
(
g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gn

)
.

Definition 2.3. Let g = (g1, . . . , gn) ∈ Gn be a tuple of elements of G. The group of g is the
subgroup

〈
g
〉

of G generated by g1, . . . , gn, and the product of g is the element πg := g1 · · · gn ∈ G.

Both the group and product of a tuple are invariant under the Hurwitz action, so we extend the
definition of these invariants and the notations ⟨m⟩ and πm when m is an orbit for the Hurwitz action.

Definition 2.4. A component (of degree n) is the orbit, under the Hurwitz action of the braid
group Bn|ξ|, of a tuple g = (g1, . . . , gn|ξ|) ∈ Gn|ξ| satisfying πg = 1 and such that exactly n ·ξ(γ) entries
of g belong to each conjugacy class γ ∈ D. The monoid of components CompP1(C)(G, D, ξ) is the
(nonnegatively) graded set whose elements of degree n are the components of degree n, equipped with
the multiplication induced by the concatenation of tuples:(

g1, . . . , gn|ξ|
)(
g′

1, . . . , g
′
n′|ξ|

)
=
(
g1, . . . , gn|ξ|, g

′
1, . . . , g

′
n|ξ|
)
.

The monoid of components is well-defined and commutative [Seg23, Propositions 3.3.8 and 3.3.11].
Components of degree n are named this way because they correspond bijectively to connected com-
ponents of the Hurwitz space classifying marked G-covers of the projective line branched at n · |ξ|
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points, among which n · ξ(γ) have their monodromy elements in each class γ ∈ D. (This connec-
tion is explained more carefully in [Seg23, Subsection 3.3.2].) The identity element of the monoid
CompP1(C)(G, D, ξ) is the orbit of the empty tuple, which corresponds to the connected component
containing only the trivial G-cover (with no branch points).

Definition 2.5. A nontrivial element of CompP1(C)(G, D, ξ) is a non-factorizable component2 if it
does not equal any product of two nontrivial components.

A simple pigeonhole argument (detailed in [Seg23, Lemma 3.4.17]) shows that there are finitely
many non-factorizable components. Therefore, the monoid of components is a finitely generated
commutative graded monoid.
Remark 2.6. The non-factorizable components do not necessarily all have the same degree; see [Seg23,
Remark 3.4.20] for a counterexample.

2.2. The ring of components

2.2.1. Definition. We now define the ring and variety of components:

Definition 2.7. The ring of components R is the graded k-algebra k[CompP1(C)(G, D, ξ)] obtained
as the monoid ring (over k) of the monoid of components. The irrelevant ideal ϖ is the (maximal)
ideal of R generated by components of positive degree.

(The ring R corresponds to RP1(C)(G, D, ξ) in the notation of [Seg23, Definition 3.4.12].)
The properties stated in Subsection 2.1 imply that the ring R is a commutative graded k-algebra

of finite type, generated by the non-factorizable components.

Definition 2.8. The variety of components is the set SpecR of prime ideals p ⊊ R, equipped with
the Zariski topology. If I is an ideal of R, we denote by V (I) the closed subset of SpecR consisting of
all prime ideals containing I.

2.2.2. Affine embedding. Assume that k is algebraically closed, and let SpmR be the subset
of SpecR consisting of closed points, i.e., of maximal ideals m ⊊ R. Then, the set SpmR can be
identified with the set of morphisms of k-algebras from R to k (identifying a maximal ideal m with
the projection R ↠ R/m ≃ k), or equivalently with the set of k-points of the scheme SpecR. Let Σ
be the finite set of non-factorizable components. Then, we can identify SpmR with a classical variety
by embedding it in the affine space kΣ as follows: a point (xm)m∈Σ belongs to SpmR if and only if
the equality xm1 · · ·xmu = xm′

1
· · ·xm′

v
holds whenever the equality m1 · · ·mu = m′

1 · · ·m′
v holds in

the monoid of components. (Note that, as the monoid of components is commutative and finitely
generated, Dickson’s lemma implies that it is presented by finitely many equalities of that type.)
Remark 2.9. The ring R is a graded k-algebra, so it may be more natural to consider the projective
variety that it defines (i.e., the set of homogeneous ideals which are maximal among those properly
contained in ϖ) instead of the affine variety SpmR. However, since non-factorizable components need
not all have the same degree (cf. Remark 2.6), the space in which the variety naturally embeds is a
weighted projective space, namely the set of orbits of kΣ \ {0} under the action of k× for which a
scalar λ ∈ k× acts on a point z by multiplying its coordinate zm (associated to a non-factorizable
component m ∈ Σ) by λdegm. Weighted projective spaces do embed in ordinary projective spaces of
higher dimension [Hos20, Theorem 3.4.9], but we mostly work with the affine variety associated to R
to avoid dealing with these subtleties.

2Non-factorizable components are simply the irreducible elements of the monoid CompP1(C)(G, D, ξ), but we avoid
the ambiguous expression “irreducible component”.
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2.3. D-generated subgroups

We briefly recall the notion of D-generated subgroups (cf. [Seg24, Definition 1.1]):

Definition 2.10. A subgroup H of G is D-generated if the sets γ ∩ H for γ ∈ D are all nonempty
and collectively generate H. We denote by SubG,D the set of subgroups of G which are either trivial
or D-generated.

The relevance of this definition comes from the following fact, proved in [Seg23, Proposition 3.2.22]:

Proposition 2.11. A subgroup H of G belongs to SubG,D if and only if there is a component m ∈
CompP1(C)(G, D, ξ) whose group is H.

If H is a D-generated subgroup of G, we define its splitting number as in [Seg24, Definition 1.2]:

Definition 2.12. Let H ∈ SubG,D. Let DH := {γ ∩H | γ ∈ D}, let cH := c ∩ H (which is also⊔
γ′∈DH

γ′), and denote by D∗
H the set of conjugacy classes of H which are contained in cH . The

splitting number of H is the integer Ω(DH) := |D∗
H | − |DH |.

Definition 2.13. A D-generated subgroup H of G is a non-splitter if Ω(DH) = 0, i.e., if DH consists
of conjugacy classes of H.

The splitting number of H plays a key role in the asymptotic count of components with group H,
cf. [Seg24, Theorem 1.4].

2.4. Chart of notations

For quick reference, the chart below indicates where the definitions introduced in this section can be
found. A short description is also given.

Notation Reference Short description
G,D, ξ, k Top of Section 1 setup
c, |ξ| Top of Section 2
Bn Definition 2.1 Artin braid group〈
g
〉
, πg Definition 2.3 group and product of a tuple (or component)

CompP1(C)(G, D, ξ) Definition 2.4 monoid of components
R Definition 2.7 ring of components

SpecR, V (I) Definition 2.8 variety of components and its closed subsets
SubG,D Definition 2.10 set of D-generated (or trivial) subgroups
Ω(DH) Definition 2.12 splitting number of H

We also include a chart of notation introduced in later sections:
Notation Reference Short description

IH , I
∗
H , JH , J

∗
H Definition 3.1 ideals of R associated to a subgroup H

RH Definition 3.1 subring of R associated to a subgroup H
γ(H) Definition 3.4 stratum associated to a subgroup H
ΓH Definition 3.6 ideal quotient (

√
I∗
H :

√
IH)

Rn,H , Nn,H Top of Section 4 space spanned by components of degree n and
group H (resp. subspace of nilpotent elements)

µH , H2(H, cH) Subsection 4.1 notation related to the lifting invariant

3. The subgroup stratification of the variety of components

In this section, we establish the stratification of the variety of components (Theorem 1.1). To this
end, we prove the more general Theorem 3.9.
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3.1. Remarkable ideals and subrings of the ring of components

Definition 3.1. Let H be a subgroup of G. We define the following graded k-linear subspaces of the
ring of components R, each of which is the space spanned by components m ∈ CompP1(C)(G, D, ξ)
(Definition 2.4) whose group ⟨m⟩ (Definition 2.3) satisfies some condition:

• IH is spanned by components whose group contains H.

• I∗
H is spanned by components whose group properly contains H.

• JH is spanned by components whose group is not properly contained in H.

• J∗
H is spanned by components whose group is not contained in H.

• RH is spanned by components whose group is contained in H.

For any subgroup H ⊆ G, the subspaces IH , I∗
H , JH and J∗

H are homogeneous ideals of R, and RH
is a graded subalgebra of R, isomorphic to the quotient R/J∗

H (cf. [Seg23, Proposition 3.4.26]). Note
that, by Proposition 2.11, the inclusions I∗

H ⊆ IH and J∗
H ⊆ JH are strict if and only if H ∈ SubG,D.

The following properties are straightforward to check (cf. [Seg23, Proposition 3.4.24]):

Proposition 3.2. The subspaces defined in Definition 3.1 satisfy the following properties:

(i) Let H ⊆ H ′ be subgroups of G. Then, we have the inclusion RH ⊆ RH
′ between the associated

subalgebras of R, and “mirrored” inclusions between the associated ideals of R:

IH′ ⊆ IH I∗
H′ ⊆ I∗

H JH′ ⊆ JH J∗
H′ ⊆ J∗

H .

(ii) We have:

I1 = J1 = RG = R I∗
1 = J∗

1 = ϖ I∗
G = J∗

G = 0 R1 = k.

(iii) For every subgroup H ⊆ G, we have:

I∗
H = IH ∩ J∗

H JH = IH + J∗
H .

(iv) For every subgroup H ⊆ G, we have:

I∗
H =

∑
H′⊋H

IH′ JH =
⋂

H′⊊H
J∗
H′ .

(v) For all subgroups H1, H2 ⊆ G, we have:

I⟨H1,H2⟩ = IH1 ∩ IH2 J∗
H1∩H2 = J∗

H1 + J∗
H2 .

We also rephrase some of the properties from Proposition 3.2 geometrically:

Proposition 3.3. The closed subsets V (IH), V (I∗
H), V (JH) and V (J∗

H) of SpecR associated to the
ideals from Definition 3.1 satisfy the following properties:

(i) Let H ⊆ H ′ be subgroups of G. Then, the following inclusions hold:

V (IH) ⊆ V (IH′) V (I∗
H) ⊆ V (I∗

H′) V (JH) ⊆ V (JH′) V (J∗
H) ⊆ V (J∗

H′).

(ii) We have:

V (I1) = V (J1) = ∅ V (I∗
1 ) = V (J∗

1 ) = {ϖ} V (I∗
G) = V (J∗

G) = SpecR.
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(iii) For every subgroup H ⊆ G, we have:

V (I∗
H) = V (IH) ∪ V (J∗

H) V (JH) = V (IH) ∩ V (J∗
H).

(iv) For every subgroup H ⊆ G, we have:

V (I∗
H) =

⋂
H′⊋H

V (IH′) V (JH) =
⋃

H′⊊H
V (J∗

H′).

(v) For all subgroups H1, H2 ⊆ G, we have:

V (I⟨H1,H2⟩) = V (IH1) ∪ V (IH2) V (J∗
H1∩H2) = V (J∗

H1) ∩ V (J∗
H2).

3.2. The strata γ(H)
We fix a subgroup H of G.

Definition 3.4. The stratum associated to H is the (locally closed) subset γ(H) := V (I∗
H) \ V (IH)

of SpecR, i.e., the set of prime ideals of R which contain I∗
H but do not contain IH .

In other words, a prime ideal p of R belongs to γ(H) if and only if p contains every component
whose group is strictly larger than H, but there is a component m of group exactly H which does not
belong to p. The stratum γ(H) is nonempty if and only if H ∈ SubG,D. Note that γ(1) = {ϖ} by
Proposition 3.3 (ii).

Proposition 3.5. The stratum γ(H) is equal to V (J∗
H) \ V (JH).

Proof. γ(H) = V (I∗
H) \ V (IH) by Definition 3.4

=
(
V (IH) ∪ V (J∗

H)
)

\ V (IH) by Proposition 3.3 (iii)

= V (J∗
H) \

(
V (IH) ∩ V (J∗

H)
)

= V (J∗
H) \ V (JH) by Proposition 3.3 (iii).

We summarize the relations between V (I∗
H), V (IH), V (J∗

H), V (JH) and γ(H) in a diagram:

V (IH) V (J∗H)

V (I∗H)

γ(H)V (JH)

The closure of the strata in SpecR can be described using ideal quotients:

Definition 3.6. We define the subset ΓH ⊆ R as the ideal quotient (
√
I∗
H :

√
IH):

ΓH := (
√
I∗
H :

√
IH) =

{
x ∈ R

∣∣∣x√IH ⊆
√
I∗
H

}
=
{
x ∈ R

∣∣∣ (x) ∩
√
IH ⊆

√
I∗
H

}
.

(The last equality comes from the fact that a product of two ideals has the same radical as their
intersection.)
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Proposition 3.7. The set ΓH satisfies the following properties:

(i) ΓH is a homogeneous radical ideal of R, namely the intersection of all prime ideals p ∈ γ(H).

(ii) The closed subset V (ΓH) ⊆ SpecR associated to ΓH is the closure of V (IH) \ V (I∗
H) = γ(H).

(iii) dimKrullR/ΓH = dimKrull γ(H) = dimKrull γ(H).

(iv) ΓH ∩
√
IH =

√
I∗
H .

(v) An ideal I of R satisfies I ∩
√
IH ⊆

√
I∗
H if and only if I is contained in ΓH .

(vi) Any ideal I of R satisfying I ∩ IH ⊆ ΓH is contained in ΓH .

Proof. Points (i) and (ii) follow from well-known properties of ideal quotients, see for example [CLO15,
Chapter 4, §4]. Point (iii) follows from (ii) (for the first equality) and [Har77, Proposition I.1.10] (for
the second equality). Points (iv) and (v) follow directly from the definition of ΓH . For point (vi),
assume that I is an ideal such that I ∩ IH ⊆ ΓH . Then, I ∩

√
IH ⊆

√
I ∩ IH ⊆ ΓH ∩

√
IH =

√
I∗
H ,

where the last equality is point (iv). By point (v), we then have I ⊆ ΓH .

3.3. The subgroup stratification of Spec R

In this subsection, we show that the strata γ(H) defined in Definition 3.4 form a stratification of the
variety of components. We first show that the strata are disjoint:

Proposition 3.8. Let H, H ′ be two distinct subgroups of G. Then γ(H) ∩ γ(H ′) = ∅.

Proof. If H ⊊ H ′, then the set γ(H) is contained in V (I∗
H) and hence in V (IH′) by Proposition 3.3 (iv),

and thus γ(H ′) has an empty intersection with γ(H). The case H ′ ⊊ H is symmetric. We now assume
that neither of H and H ′ is contained in the other, so that H̃ = ⟨H, H ′⟩ is a subgroup of G strictly
larger than bothH andH ′. We let J := γ(H)∩γ(H ′). By Proposition 3.3 (iv), we have V (I∗

H) ⊆ V (I
H̃

)
and hence γ(H) ⊆ V (I

H̃
). The same holds for H ′ and thus J ⊆ V (I

H̃
). But then V (I

H̃
)\J is a subset

of V (I
H̃

) containing both V (IH) and V (IH′). By Proposition 3.3 (v), we have V (I
H̃

) = V (IH)∪V (IH′)
which finally implies J = ∅.

We now prove the general form of the stratification:

Theorem 3.9. For every subgroup H ⊆ G, we have the following equalities:

V (IH) =
⊔

H′ subgroup of G
not containing H

γ(H ′) V (I∗
H) =

⊔
H′ subgroup of G

not properly containing H

γ(H ′)

V (JH) =
⊔

H′⊊H
γ(H ′) V (J∗

H) =
⊔

H′⊆H
γ(H ′).

By setting H = G in the equality concerning V (I∗
H), Theorem 3.9 implies Theorem 1.1.

Proof. We show by decreasing induction on the size of a subgroup H of G that:

SpecR \ V (IH) =
⋃

H′⊇H
γ(H ′). (3.1)
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Let H be a subgroup of G, and assume that every subgroup H ′ ⊆ G with |H ′| > |H| satisfies
Equation (3.1). Then:

SpecR \ V (I∗
H) = SpecR \

⋂
H′⊋H

V (IH′) by Proposition 3.3 (iv)

=
⋃

H′⊋H

(
SpecR \ V (IH′)

)
=

⋃
H′⊋H

⋃
H′′⊇H′

γ(H ′′) by the induction hypothesis

=
⋃

H′⊋H
γ(H ′).

We conclude the induction by using the equality SpecR \ V (IH) = γ(H) ∪ (SpecR \ V (I∗
H)), which

follows directly from Definition 3.4. The union in Equation (3.1) is a disjoint union by Proposition 3.8.
Plugging in H = 1 yields:

SpecR = SpecR \ V (I1) =
⊔

H′⊆G
γ(H ′) (3.2)

which is Theorem 1.1. Finally:

V (IH) = SpecR \
(
SpecR \ V (IH)

)
=

 ⊔
H′⊆G

γ(H ′)

 \

 ⊔
H′⊇H

γ(H ′)

 by Equations (3.1) and (3.2)

=
⊔

H′ subgroup of G
not containing H

γ(H ′).

Since V (I∗
H) = V (IH) ∪ γ(H) (Definition 3.4), we have the corresponding formula for V (I∗

H).
Dually, we show by increasing induction on the size of a subgroup H ⊆ G that:

V (J∗
H) =

⋃
H′⊆H

γ(H ′). (3.3)

Let H be a subgroup of G, and assume that every subgroup H ′ of G with |H ′| < |H| satisfies
Equation (3.3). Then:

V (JH) =
⋃

H′⊊H
V (J∗

H′) by Proposition 3.3 (iv)

=
⋃

H′⊊H

⋃
H′′⊆H′

γ(H ′′) by the induction hypothesis

=
⋃

H′⊊H
γ(H ′).

We conclude by using Proposition 3.5 to relate V (JH) and V (J∗
H) = γ(H) ∪ V (JH).

4. Nilpotent elements of the ring of components

In this section, we prove Theorem 4.1, which states that the ring of components satisfies a weak
asymptotic form of reducedness. This property is required for the proof of Theorem 1.2.

For the whole section, fix a subgroup H of G, let cH := c ∩ H =
⊔
γ∈D γ ∩ H, and let D∗

H be
the set of all conjugacy classes of H contained in cH . Recall from Definition 2.12 that the splitting
number of H is Ω(DH) = |D∗

H | − |D|. For each n ∈ N, let Rn,H be the linear subspace of R spanned
by components of group exactly H and of degree n, and let Nn,H be the space of nilpotent elements
of Rn,H . In other words, Rn,H = (IH ∩RH)n and Nn,H =

√
0 ∩Rn,H . We now state the theorem:
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Theorem 4.1. dimkNn,H = O
(
nΩ(DH)−1

)
.

This should be compared to [Seg24, Proposition 3.5 (ii)], which implies that dimk Rn,H ̸= o
(
nΩ(DH)

)
.

Therefore, in some sense, most high-degree elements of R are not nilpotent. The main ingredient of
the proof is Lemma 4.6, a result about the monoid of components whose proof involves the lifting
invariant from [EVW12, Woo21] (briefly reviewed in Subsection 4.1). The case where k has positive
characteristic (coprime to |G|) is Corollary 4.7. The case of characteristic 0 is Corollary 4.8, and
follows from the case of positive characteristic using classical results from model theory.

4.1. Quick review of the lifting invariant

In this short subsection, we recall some properties of the lifting invariant from [EVW12, Woo21].

Definition 4.2. If m ∈ CompP1(C)(G, D, ξ) is a component of group contained in H, represented by
a tuple g of elements of G, its H-multidiscriminant is the map µH(m) : D∗

H → Z mapping a conjugacy
class γ ∈ D∗

H to the number of entries of g which belong to γ. (This is independent of g.)

Definition 4.3. If M is an integer and m ∈ CompP1(C)(G, D, ξ) is a component of group H, we say
that m is M -big if its H-multidiscriminant µH(m) satisfies µH(m)(γ) ≥ M for each class γ ∈ D∗

H .

In [Woo21], a specific quotient H2(H, cH) of the homology group H2(H,Z) is defined. We have a
monoid homomorphism CompP1(C)(G, D, ξ) → H2(H, cH) (the first coordinate of the lifting invariant),
cf. [Seg24, Subsection 4.1]. The key properties of this invariant are summarized in the following theorem
[Woo21, Theorem 3.1 and Theorem 2.5] (see also [Seg24, Theorems 4.1 and 4.5, Remark 4.3]):

Theorem 4.4. There exists a constant M , depending only on the group G, such that any two M -big
components of group H with equal H-multidiscriminants and equal images in H2(H, cH) are equal.

Fix an integer M as in Theorem 4.4. We conclude this subsection by recalling the lemma [Seg24,
Lemma 4.6], which implies that “most components are M -big”:

Lemma 4.5. For n ∈ N, denote by RM-small
n,H the subspace of R spanned by components of group H

and degree n which are not M -big. Then, dimk R
M -small
n,H = O

(
nΩ(DH)−1

)
.

4.2. Torsion in the monoid of components

We use the notation from Subsection 4.1. In particular, we fix a constant M as in Theorem 4.4.
We prove the following lemma, which implies that the monoid of components is “not far” from being
torsionfree (a monoid is torsionfree if xr = yr for r ≥ 1 implies x = y):

Lemma 4.6. Let x and y be two M -big components of group H such that, for some integer r ∈ N
coprime with |H|, we have xr = yr. Then, x = y.

Proof. Since xr = yr, we have µH(x) = 1
r · µH(xr) = 1

r · µH(yr) = µH(y). By Theorem 4.4, it
remains only to show that the respective images x′ and y′ of x and y in H2(H, cH) are equal. The
equality xr = yr implies (x′)r = (y′)r, which in turn implies that x′(y′)−1 is an element of r-torsion of
the abelian group H2(H, cH). However, the group H2(H, cH), as a quotient of the second homology
group H2(H,Z), is of |H|-torsion (cf. [Ser62, Chap. VIII, §2, Cor. 1]) and hence does not have any
nontrivial r-torsion (r is coprime with |H|). We have shown that x′(y′)−1 = 1.

4.3. The case of positive characteristic

We fix a constant M as in Theorem 4.4. Using Lemma 4.5, we also fix a constant C̃ such that, for
all n ∈ N, the number of components m ∈ CompP1(C)(G,D, ξ) of group H and degree n which are not
M -big is bounded above by C̃ · nΩ(DH)−1.

10



Corollary 4.7. Assume that the characteristic p of k is positive and coprime to |G|. Then:

∀n ∈ N, dimkNn,H ≤ C̃ · nΩ(DH)−1.

Proof. Fix some n ∈ N. Let ur be the k-linear map Rn,H → Rnpr,H induced by x 7→ xp
r on components.

It follows from Lemma 4.6 and Lemma 4.5 that dimk ker(ur) ≤ C̃ · nΩ(DH)−1 for all r ∈ N.
Choose a basis x1, . . . , xD of Nn,H , and complete it into a basis x1, . . . , xD︸ ︷︷ ︸

∈Nn,H

, xD+1, . . . , xD′ of Rn,H .

Note that D = dimNn,H and D′ = dimRn,H . Express the vectors x1, . . . , xD′ in the basis m1, . . . ,mD′

of Rn,H given by all components of group H and of degree n:

xi =
D′∑
j=1

λi,jmj .

Since x1, . . . , xD are nilpotent, fix r ≥ 1 such that xp
r

i = 0 for all i ∈ {1, . . . , D}. For i ∈ {1, . . . , D′},
define:

x̃i :=
D′∑
j=1

λp
r

i,jmj .

Then, (x̃1, . . . , x̃D′) is still a basis of Rn,H . Indeed, by the properties of the Frobenius endomorphism,
the determinant of the matrix (λp

r

i,j)i,j is the pr-th power of the determinant of the matrix (λi,j)i,j ,
which is nonzero because x1, . . . , xD′ is a basis. In particular, the vectors x̃1, . . . , x̃D are linearly
independent.

Now, if i ∈ {1, . . . , D}, we have:

ur(x̃i) =
D′∑
j=1

λp
r

i,ju
r(mj) =

D′∑
j=1

λp
r

i,jm
pr

j =

 D′∑
j=1

λi,jmj

pr

= xp
r

i = 0.

So x̃1, . . . , x̃D is a list of D linearly independent vectors in ker(ur). The existence of such a list implies
that D ≤ dimk ker(ur), and finally dimkNn,H = D ≤ dimk ker(ur) ≤ C̃ · nΩ(DH)−1.

4.4. The case of characteristic zero

The setting and the notation are the same as in Subsection 4.3.

Corollary 4.8. Assume that the characteristic of k is zero. Then:

∀n ∈ N, dimkNn,H ≤ C̃ · nΩ(DH)−1.

Proof. Since dimensions do not change under field extensions, we may assume that k is algebraically
closed. Fix an integer n ∈ N and denote by F the finite set of components of degree n and group H.
For each r ≥ 1, define the following finite subset of CompP1(C)(G,D, ξ):

F∧r = {m1m2 · · ·mr |m1,m2, . . . ,mr ∈ F} .

Consider an arbitrary field K. For every r ≥ 1 and every element x =
∑
m∈F λmm in the K-vector

space spanned by F , we have the following equality in K[CompP1(C)(G,D, ξ)]:

xr =
∑

m1,m2,...,mr∈F
λm1λm2 · · ·λmr · (m1m2 · · ·mr)

=
∑

m∈F∧r

 ∑
m1,m2,...,mr∈F
m1m2···mr=m

λm1λm2 · · ·λmr

m.
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If λ = (λm)m∈F is a tuple of variables indexed by F , we denote by Nilpr(λ) the following conjunction,
which is a first-order property in the language of fields expressing the fact that the element x =∑
m λmm satisfies xr = 0 in K[CompP1(C)(G,D, ξ)]:

∧
m∈F∧r

 ∑
m1,m2,...,mr∈F
m1m2···mr=m

λm1λm2 · · ·λmr = 0

.
Let d := C̃ · nΩ(DH)−1 + 1. If λ(1), . . . , λ(d) are d tuples of variables, each indexed by F , we denote

by Indep(λ(1), . . . , λ(d)) the following first-order property in the language of fields, expressing the fact
that the elements x(i) =

∑
m λ

(i)
mm are linearly independent:

∀x1, . . . ,∀xd,
( ∧
m∈F

[x1λ
(1)
m + · · · + xdλ

(d)
m = 0]

)
=⇒ (x1 = 0 ∧ x2 = 0 ∧ . . . ∧ xd = 0).

Finally, we define the first-order property φr as:

∀λ(1), . . . ,∀λ(d),
(
Nilpr(λ(1)) ∧ . . . ∧ Nilpr(λ(d))

)
=⇒ ¬Indep(λ(1), . . . , λ(d)),

expressing the fact that any elements x(1), . . . , x(d) ∈ SpanK(F ) whose r-th powers all vanish in
K[CompP1(C)(G,D, ξ)] are linearly dependent, i.e., that the dimension of the subspace of SpanK(F )
spanned by elements whose r-th powers are zero is at most d− 1 = C̃ · nΩ(DH)−1.

By Corollary 4.7, the field Fp satisfies the property φr for all r ∈ N when p is a prime not
dividing |G|. Let U be a non-principal ultrafilter on the set P of primes coprime to |G|, and let K be
the ultraproduct

∏
p∈P Fp/U , i.e., the quotient of the ring

∏
p∈P Fp by the (maximal) ideal generated

by elements whose coordinates vanish for all primes p in some set P ′ ∈ U . By Łoś’s theorem [Mar02,
Exercise 2.5.18], K is an algebraically closed field of characteristic zero satisfying φr for all r ≥ 1. Since
the theory of algebraically closed fields of characteristic zero is complete [Mar02, Corollary 3.2.3], the
same is true of k. Therefore, the dimension of the subspace Nn,H,r of Rn,H spanned by elements whose
r-th power vanishes is at most C̃ · nΩ(DH)−1, for all r ≥ 1. As the space Nn,H is the increasing union
of the subspaces Nn,H,r for r ≥ 1, we have:

dimkNn,H = sup
r≥1

(
dimkNn,H,r

)
≤ C̃ · nΩ(DH)−1.

5. Dimensions and degrees of the strata

In this section, we prove Theorem 1.2. We fix a nontrivial D-generated subgroup H ∈ SubG,D, and
we prove that the Krull dimension of the stratum γ(H) (Definition 3.4) is related to the splitting
number Ω(DH) (Definition 2.12) by the equality dimKrull γ(H) = Ω(DH) + 1.

The section is organized in the following way:

• In Subsection 5.1, we introduce tools we need. We prove a bound on the Krull dimension of
some quotients (Lemma 5.1), we recall the general form of the Hilbert–Serre theorem for algebras
whose generators have unequal degrees (Theorem 5.2), and we combine these two ingredients in
Corollary 5.3.

• In Subsection 5.2, we compute the Krull dimension of the strata (Theorem 1.2) using the tools
from Subsection 5.1 and the counting results from [Seg24].

• In Subsection 5.3, we relate the degree of γ(H) (embedded in projective space) to the leading
coefficients computed in [Seg24, Section 4].
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5.1. Preliminaries

In this subsection, we introduce tools which are later used to compute the dimension of γ(H). The
main tool is the following lemma:

Lemma 5.1. Let B be a nonzero finitely generated commutative graded k-algebra and J be a homo-
geneous ideal of B such that, for all ideals I of B, we have:

I ∩ J ⊆
√

0 =⇒ I ⊆
√

0. (5.1)

Then, we have dimKrull(B/J) < dimKrullB.

Proof. Let p1, . . . , pu be the minimal homogeneous prime ideals of B, whose number is finite as B is
Noetherian.

Assume by contradiction that J is contained in pi for some i ∈ {1, . . . , u}, and let Vi :=
⋂
j ̸=i pj .

The ideal Vi ∩ pi is the intersection of all minimal homogeneous primes of B, i.e., the nilradical
√

0.
Since J ⊆ pi, we have Vi∩J ⊆ Vi∩pi =

√
0. By Equation (5.1), this implies Vi ⊆

√
0. But then Vi ⊆ pi

with pi prime, and thus some pj with j ̸= i must be contained in pi, contradicting the minimality
of pi. We have shown that J is not contained in any pi.

Consider a maximal chain J ⊆ q0 ⊊ q1 ⊊ . . . ⊊ qdimKrull(B/J) of prime ideals of B containing J . By
the previous paragraph, the inclusion J ⊆ q0 implies that q0 is not a minimal homogeneous prime ideal
of B. Therefore, q0 properly contains some pi for i ∈ {1, . . . , u}. We then have the chain pi ⊊ q0 ⊊ q1 ⊊
. . . ⊊ qdimKrull(B/J) of homogeneous prime ideals of B, proving that dimKrullB > dimKrull(B/J).

A second tool is Theorem 5.2, which is a variant of the Hilbert–Serre theorem for graded algebras
whose generators are not necessarily of degree 1. The case where all generators have degree 1 is
classical (see for example [Har77, Theorem I.7.5]), and in that case the Hilbert function eventually
coincides with a polynomial. In the general case, there is instead a finite list of polynomials through
which the Hilbert function eventually cycles periodically: we have a Hilbert quasi-polynomial.

Theorem 5.2 (Hilbert-Serre). Let A be a commutative graded k-algebra of positive Krull dimension,
generated by finitely many generators of respective degrees d1, . . . , dN . Let W := lcm(d1, . . . , dN ).
Then, there exist (uniquely defined) polynomials Q0, . . . , QW−1 such that:

(i) For all m ∈ {0, . . . ,W − 1} and n large enough, we have HFA(Wn+m) = Qm(n);

(ii) degQ0 = dimKrull(A) − 1;

(iii) degQm ≤ dimKrull(A) − 1 for all m ∈ {1, . . . ,W − 1}.

For proofs, we refer the reader to [BH98, Theorem 4.4.3] or [Seg23, Lemmas 5.4.4, 5.4.5 and 5.4.6].
To say that two functions f and g satisfy f = O(g) and f ̸= o(g), we write f = O♯(g). With this

notation, Theorem 5.2 implies the following, for any algebra A satisfying the hypotheses:

HFA(n) = O♯
(
ndimKrull(A)−1

)
. (5.2)

Together, Theorem 5.2 and Lemma 5.1 directly imply:

Corollary 5.3. Under the hypotheses of Lemma 5.1, we have dimk Jn = HFB(n)+O
(
ndimKrull(B)−2

)
.

5.2. The dimension of γ(H)
We are ready to prove Theorem 1.2 : the Krull dimension of the stratum γ(H) is one more than the
splitting number Ω(DH).
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Proof of Theorem 1.2. Let Rn,H := (IH ∩RH)n be the space spanned by components of group H and
of degree n. In order to apply Corollary 5.3, we check that the hypotheses of Lemma 5.1 hold when
B = RH/(ΓH ∩RH) and J is the image of IH ∩RH in B. First, B is a finitely generated commutative
graded k-algebra (cf. Subsection 2.2) and J is a homogeneous ideal of B. Since the ideal ΓH being
radical, B is reduced and hence

√
0 = 0 in B. We consider an ideal I of B such that I ∩ J = 0, and

we want to show that I = 0. Let Ĩ be the inverse image of I in RH . Then, I ∩ J = 0 rewrites as
Ĩ ∩ IH ⊆ ΓH ∩ RH . By Proposition 3.7 (vi), this implies Ĩ ⊆ ΓH , i.e., I = 0. We have checked the
hypotheses of Lemma 5.1. We obtain:

dimk Jn = HFRH/(ΓH∩RH)(n) +O
(
ndimKrull(RH/(ΓH∩RH))−2

)
by Corollary 5.3

= O♯
(
ndimKrull(RH/(ΓH∩RH))−1

)
by Equation (5.2)

= O♯
(
ndimKrull γ(H)−1

)
by
{
RH/(ΓH ∩RH) ≃ R/ΓH
Proposition 3.7 (iii)

By Proposition 3.7 (iv), the intersection ΓH ∩ IH is contained in
√
I∗
H . As one cannot obtain nonzero

terms involving components of group strictly larger than H by taking powers of linear combinations
of components of group exactly H, elements of

√
I∗
H ∩ IH ∩ RH are exactly the nilpotent elements

of IH ∩RH . Thus, (ΓH ∩ IH ∩RH)n ⊆ (
√
I∗
H ∩ IH ∩RH)n = (

√
0 ∩ IH ∩RH)n = Nn,H . We have:

dimk Jn = dimk(IH ∩RH)n − dimk(ΓH ∩ IH ∩RH)n by definition of J

= dimk Rn,H +O(dimkNn,H) as
{

(IH ∩RH)n = Rn,H
(ΓH ∩ IH ∩RH)n ⊆ Nn,H

= O♯
(
nΩ(DH)

)
+O

(
nΩ(DH)−1

)
by

{
[Seg24, Theorem 3.2 (ii)]
Theorem 4.1

= O♯
(
nΩ(DH)

)
.

Comparing the two estimates for dimk Jn, we obtain dimKrull γ(H) − 1 = Ω(DH).

5.3. The degree of γ(H)
In this subsection, we use the results of [Seg24, Section 4] to obtain more precise results concerning the
strata γ(H). We come back to where the proof of Theorem 1.2 ended, including all notation and hy-
potheses. Since we now know that dimKrull γ(H)−1 = Ω(DH), we obtain (again by expressing dimk Jn
in two different ways):

dimk Rn,H = HFRH/(ΓH∩RH)(n) +O
(
nΩ(DH)−1

)
. (5.3)

Assume that all non-factorizable elements of CompP1(C)(G,D, ξ) have the same degree W , and
let N be their number. Then, ProjR embeds in the projective space PN−1(k), and we can compute
the degree3 of the closed subset γ(H) (the degree of a non-irreducible subset is the sum of the degrees
of its irreducible components of maximal Krull dimension). Note that we consider Proj instead of Spec:
we have quotiented out by the action of k× and all dimensions are one less than previously computed.
In this case, we know that HFRH/(ΓH∩RH)(n) and dimk Rn,H vanish whenever n is not a multiple of W ,
and coincide with two polynomials of degree Ω(DH) when evaluated at large enough multiples of W .
Moreover, Equation (5.3) implies that the leading monomials of these two polynomials are equal:

dimk RWn,H ∼
n→∞

HFRH/(ΓH∩RH)(Wn) ∼
n→∞

α · (Wn)Ω(DH) for some α > 0.

3A similar computation is possible when non-factorizable elements have different degrees – one should then average
the coefficients in front of nΩ(DH ) of the polynomials Q0, . . . , QW −1 of Theorem 5.2 –, but there does not seem to be a
standard notion of degree for subspaces of weighted projective spaces.

14



Classically, the number Ω(DH)! ·α is the degree of the closed subset γ(H) of PN−1(k). Recall that the
group H2(H, cH) (mentioned in Subsection 4.1) is defined in [Woo21] or [Seg24, Definition 4.4]. The
results of [Seg24] give the value of α, and consequently of the degree of γ(H), in various situations:

• If H is a non-splitter, then Ω(DH) = 0 by definition, and α = |H2(H, cH)| by [Seg24, Proposi-
tion 4.11]. In this case, γ(H) (embedded in the projective space PN−1(k)) is of dimension zero:
it is a union of finitely many points. The degree is precisely the number of these points: there
are |H2(H, cH)| of them.
Remark 5.4. If one sees γ(H) as embedded in affine space AN (k) (as we have done in other
sections), it is a union of |H2(H, cH)| lines going through the origin 0.

• Assume that D consists of a single conjugacy class c of G and ξ(c) = 1. Let ord(c) be the order
of any element contained in the conjugacy class c. Let s be the number of conjugacy classes
of H contained in c ∩H, so that Ω(DH) = s− 1. By [Seg24, Corollary 4.14] and the comments
underneath it, we have:

α = ord(c) · |H2(H, cH)|
(s− 1)! · |Hab|

.

The degree of γ(H) is then given by:

ord(c) · |H2(H, cH)|
|Hab|

.

6. Explicit description of the variety of components

This section is organized as follows:

• In Subsection 6.1, we describe a curve which is contained in each stratum γ(H) (Theorem 6.2).
In some situations, we prove that this curve is all of γ(H).

• In Subsection 6.2, we define the notion of a free factor family of subgroups (Definition 6.4 and
Definition 6.6). In Proposition 6.8, we state key properties of this notion.

• In Subsection 6.3, we describe the stratum corresponding to the product of a free factor family
in terms of the strata associated to its factors (Proposition 6.14). We then use this to obtain a
complete description of the variety of components under specific hypotheses (Theorem 6.16).

• In Subsection 6.4, we rephrase the description explicitly in terms of coordinates (Theorem 6.20).

• In Subsection 6.5, we apply Theorem 6.20 to obtain a complete description of the variety of
components in the classical case of symmetric groups, using the results of [Seg23, Chapter 6].

6.1. A curve in each stratum

Fix a nontrivial D-generated subgroup H of G. In this subsection, we describe a curve which is
contained in the stratum γ(H), and give a criterion for it to be all of γ(H). We start by defining
ideals A◦

H and AH :

Definition 6.1. We let A◦
H be the homogeneous ideal of R generated by the differences m − m′,

for pairs (m, m′) of components of same degree whose group is contained in H. We also define
AH := A◦

H + J∗
H .

We let p1, . . . , pM be the non-factorizable components whose group is contained in H. In the quo-
tient R/AH , components whose group is not contained in H are made to vanish, and other components
are made to be equal whenever their degrees match. In other words, whereas the ring of components R
is the monoid algebra of the monoid of components CompP1(C)(G, D, ξ), the quotient R/AH is the
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monoid algebra of the submonoid of Z≥0 formed of integers which are the degree of some component
whose group is contained in H. A more concrete description of the ideal AH , of the quotient R/AH ,
and of the closed subset V (AH) ⊆ SpecR is given by the following theorem:

Theorem 6.2. Let p1, . . . , pM be the non-factorizable components whose group is contained in H,
let d(1), . . . , d(M) be their respective degrees, and let D := gcd1≤i≤M d(i). Then:

(i) The quotient R/AH is isomorphic to the graded subalgebra k[Xd(1), . . . , Xd(M)] of k[X].

(ii) AH is a homogeneous prime ideal of R, and the Krull dimension of R/AH is 1. Hence, V (AH)
is a 1-dimensional irreducible closed subset of SpecR, contained in V (J∗

H).

(iii) We have
√
AH + IH = ϖ and V (AH) \ {ϖ} ⊆ γ(H).

(iv) If there is at most one component of group H for each degree,4 then V (AH) = γ(H) ∪ {ϖ}.

(v) Assume that k is algebraically closed and let pM+1, . . . , pN be the non-factorizable components
whose group is not contained in H. Embed the set of k-points of SpecR into kN as in Para-
graph 2.2.2. Then, the k-points of V (AH) form a “weighted” line, consisting of points of the
following form, for some λ ∈ k:

(λd(1)/D, λd(2)/D, . . . , λd(M)/D︸ ︷︷ ︸
non-factorizable components

of group ⊆H

, 0, . . . , 0︸ ︷︷ ︸
other non-factorizable components

).

In particular, under the hypothesis of (iv), all the k-points of γ(H) are points of the form above
for λ ∈ k×.

Proof.

(i) The image of a component m (whose group is contained in H) in the quotient R/AH is entirely
determined by the degree of m, so that we can denote its image by Xdeg(m). Applying this to
each non-factorizable component whose group is contained in H shows that R/AH ≃ RH/(A◦

H ∩
RH) is a quotient of k[Xd(1), . . . , Xd(M)]. Relations between the non-factorizable components
are generated by equalities of the form m1 · · ·mu = m′

1 · · ·m′
u for non-factorizable components

m1, . . . ,mu,m
′
1, . . . ,m

′
u satisfying deg(m1) + · · · + deg(mu) = m′

1 + · · · + deg(m′
u). But such

relations are automatically satisfied in k[Xd(1), . . . , Xd(M)], so that R/AH ≃ k[Xd(1), . . . , Xd(M)].

(ii) The quotient R/AH ≃ k[Xd(1), . . . , Xd(M)] is a graded subalgebra of the domain k[X] and hence
is integral. This proves that AH is a prime ideal of R. Moreover, the Krull dimension of R/AH
equals the transcendence degree of its field of fractions Frac(R/AH) ≃ Frac(k[Xd(1), . . . , Xd(M)]) =
k(XD), which is 1. The claims concerning V (AH) follow.

(iii) Since H is D-generated, the product p1 · · · pM has group exactly H and hence belongs to IH .
The image of that element in R/AH is Xd(1)+···+d(M), and thus R/(AH + IH) is a quotient
of the algebra k[Xd(1), Xd(2), . . . , Xd(M)]/(Xd(1)+···+d(M)), in which all homogeneous elements of
positive degree are nilpotent. Therefore, the reduced quotient of R/(AH+IH) is k, which implies
that

√
AH + IH = ϖ. It follows that V (AH)∩V (IH) = {ϖ}, i.e., that V (AH)\{ϖ} is contained

in V (J∗
H) \ V (IH) = γ(H).

(iv) We have shown that V (AH) ⊆ γ(H) ∪ {ϖ}, hence it remains only to show that V (AH) ⊇ γ(H),
i.e., that V (AH) ∪ V (IH) = V (I∗

H). It suffices to show that AH ∩ IH = I∗
H . Let S be the

4This hypothesis implies that H is a non-splitter and H2(H, cH) = 1 by [Seg24, Theorem 1.4]. This result is an
“effective” version of the case H2(H, cH) = 1 of Remark 5.4.
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submonoid of Z≥0 formed of integers which are the degree of some component of group H, and
let Fk be the only component of group H of degree k for k ∈ S. An element of IH is of the form:

x =
∑
k∈S

λkFk + x⊋H︸︷︷︸
∈I∗

H

.

The image of x in R/AH (seen as a subring of k[X] via point (i)) is
∑
k∈S λkX

k. So, x belongs
to AH exactly when the coefficients λk vanish for all k ∈ S, if and only if x = x⊋H belongs to I∗

H .

(v) A point (x1, . . . , xN ) ∈ (SpecR)(k) is in V (AH)(k) if xM+1 = . . . = xN = 0 (because AH
contains J∗

H), and if two products of the coordinates xi are equal whenever the sums of the
degrees of the corresponding non-factorizable components pi match. Using Bézout’s identity, fix
integers a1, . . . , aM ∈ Z such that:

D =
M∑
i=1

aid(i).

For each i ∈ {1, . . . ,M}, we have in R/AH :

pi

 ∏
j s.t. aj≤0

p
−aj

j

d(i)/D

=

 ∏
j s.t. aj≥0

p
aj

j

d(i)/D

because both sides are components of same degree, since d(i) = d(i)
D ·

∑
j ajd(j). Hence,

(x1, . . . , xM , 0, . . . , 0) ∈ V (AH)(k) means that we have, for all i ∈ {1, . . . ,M}:

xi =

∏
j

x
aj

j

d(i)/D

= λd(i)/D

where λ =
∏
j x

aj

j does not depend on i. So, points of V (AH)(k) are of the form:

(λd(1)/D, λd(2)/D, . . . , λd(M)/D, 0, . . . , 0) with λ ∈ k.

The coordinates of such a point satisfy the equalities defining R, since these are equalities between
components of same degree and same group.

Remark 6.3. The principle of Theorem 6.2 is to forget everything about a given component besides its
degree and the fact that its group is contained in H. Finer descriptions of γ(H) may be obtained by
forgetting less information about these components, for example by replacingAH by the ideal generated
by the differences m − m′ between two components of same group H, same H-multidiscriminant
(Definition 4.2) and same image in H2(H, cH) (cf. Subsection 4.1), i.e., with the same lifting invariant
in the sense of [Woo21].

6.2. Free families and factor families

Definition 6.4. A list H1, . . . ,Hk of subgroups of G is a free family if the two following conditions
are met:

• For all disjoint subsets A,B of {1, . . . , k}, we have ⟨(Hi)i∈A⟩ ∩ ⟨(Hj)j∈B⟩ = 1.

• Elements of Hi commute with elements of Hj when i ̸= j.

Definition 6.5. If H1, . . . ,Hk is a free family of subgroups of G, the (Zappa–Szép) product of this
family is the subgroup ⟨H1, . . . ,Hk⟩ of G.
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As an abstract group, the product of a free family H1, . . . ,Hk is isomorphic to the direct product
of the groups Hi. We now fix a subgroup H ∈ SubG,D.

Definition 6.6. A factor family of H is a list H1, . . . ,Hk of D-generated subgroups of H such that
every non-factorizable component whose group is contained in H has its group contained in some Hi.

Proposition 6.7. Let H1, . . . ,Hk be a factor family of H. Then, H1, . . . ,Hk generate H.

Proof. Use Proposition 2.11 to fix a component m of group H, and write m as a product of non-
factorizable components m = m1 · · ·mr. Since H1, . . . ,Hk is a factor family of H, each factor mi has
its group contained in some Hj . Hence, H = ⟨m⟩ = ⟨⟨m1⟩, . . . , ⟨mr⟩⟩ is contained in ⟨H1, . . . ,Hk⟩.

Proposition 6.8. Let H1, . . . ,Hk be a list of subgroups of H. Denote by Φ the following morphism
of k-algebras:

Φ :
{
RH1 ⊗ · · · ⊗RHk → RH

m1 ⊗ · · · ⊗mk 7→ m1 · · ·mk
.

Then:

(i) H1, . . . ,Hk is a factor family if and only if Φ is surjective.

(ii) If H1, . . . ,Hk is free, then Φ is injective.

(iii) Assume that H1, . . . ,Hk is a free factor family of H. Then:

Φ−1(IH ∩RH) = (IH1 ∩RH1) ⊗ · · · ⊗ (IHk
∩RHk).

Proof.

(i) (⇐) Assume that Φ is surjective, and consider a non-factorizable component m ∈ RH . Since m
is in the image of Φ and is a component (not a linear combination thereof), it equals a
product m1 · · ·mk with ⟨mi⟩ ⊆ Hi. Since m is non-factorizable, we have m = mi for some i
and thus ⟨m⟩ ⊆ Hi.

(⇒) Conversely, assume that H1, . . . ,Hk is a factor family. To prove that Φ is surjective, it is
enough to show that its image contains an arbitrary component m whose group is contained
in H. Decompose m as a product m1 · · ·mr of non-factorizable components. By hypothesis,
for each j ∈ {1, . . . , r}, we can pick ψ(j) ∈ {1, . . . , k} such that ⟨mj⟩ ⊆ Hψ(j). For i ∈
{1, . . . , k}, let m′

i be the product of the components mj such that ψ(j) = i. Then m =
Φ(m′

1 ⊗ · · · ⊗m′
k).

(ii) Assume that the family (Hi) is free. Since Φ maps pure tensors of components to components,
and since components form a basis, it suffices to check that Φ maps distinct pure tensors of
components to distinct components. Thus, we assume that there are two tuples (m1, . . . ,mk)
and (m′

1, . . . ,m
′
k) of components, with ⟨mi⟩ and ⟨m′

i⟩ contained in Hi, such that:

k∏
j=1

mj =
k∏
j=1

m′
j .

Consider a braid relating two tuples representing these two components, and decompose it into el-
ementary braids. Since the subgroups Hi commute with each other, elementary braids swapping
two elements from different subgroups Hi do not change these elements, and do not affect the po-
sition of these elements among elements of the same subgroup. Hence, fixing some i ∈ {1, . . . , k}
and retaining only elementary braids which do exchange elements of the same subgroup Hi yields
a braid relating mi and m′

i, proving that mi = m′
i. Therefore, Φ is injective.
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(iii) First note that Φ is an isomorphism by the previous points. That Φ
(
(IH1 ∩RH1) ⊗ · · · ⊗ (IHk

∩
RHk)

)
⊆ IH ∩ RH follows immediately from the fact that a product of components m1 · · ·mk

with ⟨mi⟩ = Hi has group ⟨H1, . . . ,Hk⟩ = H (cf. Proposition 6.7).
Conversely, consider nonzero constants λj ∈ k and components mi,j with ⟨mi,j⟩ ⊆ Hi (such that
no two tuples (mi,j)1≤i≤k are equal for distinct values of j), such that:

Φ

∑
j

λj · (m1,j ⊗ · · · ⊗mk,j)

 ∈ IH ∩RH .

Then, each component m1,j · · ·mk,j has group exactly H. Fix a j. The groups ⟨mi,j⟩ for
i ∈ {1, . . . , k}, being subgroups of Hi, form a free family of subgroups of H and hence the
group generated by m1,j · · ·mk,j is isomorphic to the direct product

∏k
i=1⟨mi,j⟩. We have |H| =∏k

i=1|Hi| but also |H| = |⟨m1,j · · ·mk,j⟩| =
∏k
i=1|⟨mi,j⟩| with |⟨mi,j⟩| ≤ |Hi|, which implies

that the component mi,j has group exactly Hi, for each i ∈ {1, . . . , k}. Therefore, the element∑
j λj · (m1,j ⊗· · ·⊗mk,j) belongs to (IH1 ∩RH1)⊗· · ·⊗ (IHk

∩RHk), which proves the claim.

Finally, we give a group-theoretic criterion to identify some factor families:

Proposition 6.9. Assume that |D| = 1 and ξ = 1, i.e., we consider a single conjugacy class c.
Assume that H is a subgroup of G generated by subgroups H1, . . . ,Hk such that:

(i) For all i ∈ {1, . . . , k}, the subgroup Hi has a trivial intersection with ⟨(Hj)j ̸=i⟩.

(ii) c ∩H =
k⊔
i=1

(c ∩Hi).

Then, H1, . . . ,Hk is a factor family of H.

Proof. For i ∈ {1, . . . , k}, let ci := c ∩ Hi. Consider a non-factorizable component m whose group is
contained in H. By (ii), and using the fact that braids can permute conjugacy classes freely, we may
choose a tuple g representing the component m of the form:

g = (g1,1, . . . , g1,n(1), . . . , gk,1, . . . , gk,n(k)) with gi,j ∈ ci.

Let πi := gi,1 · · · gi,n(i) ∈ Hi. We have π1 · · ·πk = 1 and thus πi = (πi+1 · · ·πkπ1 · · ·πi−1)−1 ∈ ⟨(Hj)j ̸=i⟩.
By (i), this implies πi = 1. Therefore, all the tuples g

i
= (gi,1, . . . , gi,n(i)) ∈ c

n(i)
i define components.

Since m is non-factorizable, it equals one of its factors and thus ⟨m⟩ is contained in some Hi.

6.3. The stratum associated to the product of a free factor family

We fix a subgroup H ∈ SubG,D.

6.3.1. The set γ̃(H).

Definition 6.10. We denote by γ̃(H) the open subset of SpecRH obtained as the complement
of V (IH ∩ RH). In other words, γ̃(H) is the set of all prime ideals of SpecRH for which some
component m of group exactly H does not belong to p.

We denote by πH the dominant map SpecR → SpecRH induced by the inclusion RH ↪→ R, and
by ιH the embedding SpecRH → SpecR induced by the surjection R ↠ R/J∗

H ≃ RH . Since the
composition RH ↪→ R↠ R/J∗

H ≃ RH is the identity map, we have the equality:

πH ◦ ιH = idSpecRH (6.1)

The sets γ(H) and γ̃(H) determine each other, as shown below:
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Proposition 6.11. The sets γ(H) and γ̃(H) are related by the following equalities:

(i) γ(H) = ιH(γ̃(H))

(ii) γ̃(H) = πH(γ(H))

(iii) γ(H) = V (J∗
H) ∩ π−1

H (γ̃(H))

Proof.

(i) (⊆) Let p ∈ γ(H). Then, p is a prime ideal of R containing J∗
H , and not containing some

component m of group H. Since p contains J∗
H , we have p = J∗

H + (p∩RH) = ιH(p∩RH).
Moreover, p ∩RH is a prime ideal of RH not containing m, and thus p ∩RH ∈ γ̃(H).

(⊇) Let p ∈ γ̃(H). Then, p is a prime ideal of RH not containing some component m of
group H. The prime ideal ιH(p) = p + J∗

H of R contains J∗
H but does not contain m, and

thus it belongs to γ(H).

(ii) Follows from (i) by applying πH to both sides, and using Equation (6.1).

(iii) The inclusion ⊆ follows from Proposition 3.5 and from (ii). Conversely, let p ∈ V (J∗
H) ∩

π−1
H (γ̃(H)). Since p contains J∗

H , we have p = J∗
H + (p ∩ RH), i.e., p = J∗

H + πH(p). By
hypothesis, πH(p) ∈ γ̃(H) and hence there is some component m of group H which is not
contained in πH(p) = p ∩RH . But then m is also not contained in p and thus p ∈ γ(H).

Remark 6.12. We can interpret Proposition 6.11 more concretely when k is algebraically closed and
we focus on k-points. Let p1, . . . , pM be the non-factorizable components whose group is contained
in H. Then, Proposition 6.11 implies that the k-points of γ(H) are exactly the points of the form

( x1, . . . , xM︸ ︷︷ ︸
coordinates corresponding to

p1, ..., pM

, 0, . . . , 0︸ ︷︷ ︸
coordinates corresponding to

other non-factorizable components

)

where (x1, . . . , xM ) is a k-point of γ̃(H). On the other hand, the k-points of π−1
H (γ̃(H)) are those

whose coordinates (x1, . . . , xM ) form a k-point of γ̃(H), with no additional restriction on the other
coordinates besides the fact that the point has to be a k-point of SpecR.

6.3.2. Free factor families and strata. We now fix a free factor family H1, . . . ,Hk of H. Our goal
is to relate the stratum associated to H to the strata associated to its factors H1, . . . ,Hk. The first
tool is the following proposition, which rephrases parts of Proposition 6.8 geometrically:

Proposition 6.13. The natural morphism Φ: RH1 ⊗· · ·⊗RHk → RH is an isomorphism, i.e., the map
SpecRH →

∏k
i=1 SpecRHi, which we also denote by Φ, is a homeomorphism (even an isomorphism of

schemes). Moreover, we have the following equality:

γ̃(H) = Φ−1
(

k∏
i=1

γ̃(Hi)
)
. (6.2)

Proof. That Φ is an isomorphism follows from points (i) and (ii) of Proposition 6.8. Equation (6.2)
follows directly from Proposition 6.8 (iii) by rephrasing it in terms of closed subsets and taking
complements.

Proposition 6.14. We have the following description of γ(H):

γ(H) = V (J∗
H) ∩

k⋂
i=1

π−1
Hi

(γ̃(Hi)) = V (J∗
H) ∩

k⋂
i=1

π−1
Hi

(πHi(γ(Hi))).
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Proof. We compute γ(H) in the following way:

γ(H) = V (J∗
H) ∩ π−1

H (γ̃(H)) by Proposition 6.11 (iii)

= V (J∗
H) ∩ π−1

H

(
Φ−1

(
k∏
i=1

γ̃(Hi)
))

by Equation (6.2) .

Define πHi→H as the dominant map SpecRH → SpecRHi induced by the inclusion RHi ↪→ RH ,
so that Φ = πH1→H × · · · × πHk→H . The set

∏k
i=1 γ̃(Hi) can be tautologically described as the

subset of
∏
i SpecRHi formed of elements whose projection in SpecRHi belongs to γ̃(Hi) for each

i ∈ {1, . . . , k}. Therefore, the set Φ−1
(∏k

i=1 γ̃(Hi)
)

is the subset of SpecRH formed of elements x
whose projection in SpecRHi (namely πHi→H(x)) belongs to γ̃(Hi) for all i ∈ {1, . . . , k}. This yields
the equality:

Φ−1
(

k∏
i=1

γ̃(Hi)
)

=
k⋂
i=1

π−1
Hi→H(γ̃(Hi)).

Plugging this in the expression of γ(H) obtained above, we get:

γ(H) = V (J∗
H) ∩ π−1

H

(
k⋂
i=1

π−1
Hi→H(γ̃(Hi))

)

= V (J∗
H) ∩

k⋂
i=1

π−1
Hi

(γ̃(Hi)) because πHi→H ◦ πH = πHi .

The second equality follows using Proposition 6.11 (ii).

6.3.3. Complete description of the variety of components. We make the following definition:

Definition 6.15. A subgroup H ∈ SubG,D is a factored splitter if there exists a free factor family
of H of size at least 2.

Proposition 6.14 then implies the following theorem:

Theorem 6.16. Assume that:

• Every nontrivial H ∈ SubG,D is either a non-splitter or a factored splitter.

• For every non-splitter H ∈ SubG,D, there is at most one component of group H of each degree.

Under these hypotheses, we describe γ(H) for every H ∈ SubG,D:

(i) γ(1) = {ϖ}.

(ii) If H is a non-splitter, γ(H) is the curve V (AH) \ {ϖ} from Theorem 6.2.

(iii) Otherwise, H is a factored splitter, and we can write H = H1 × . . . × Hk where the subgroups
H1, . . . ,Hk form a free factor family of non-splitters. Then:

γ(H) = V (J∗
H) ∩

k⋂
i=1

π−1
Hi

(
πHi

(
V (AHi) \ {ϖ}

))
.

Since, by Theorem 1.1, the strata γ(H) cover SpecR, this yields a complete description of SpecR.

Proof. Point (i) is clear. Consider a nontrivial subgroup H ∈ SubG,D, and choose a maximal free factor
family H1, . . . ,Hk of H. For all i ∈ {1, . . . , k}, the subgroup Hi is a non-splitter, as otherwise Hi is a
factored splitter (by the first hypothesis) and we can construct a longer free factor family, contradicting
maximality. By Proposition 6.14, we can therefore reduce the proof of (iii) to the proof of (ii). Finally,
point (ii) follows from Theorem 6.2 (iv) and from the second hypothesis.
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6.4. Complete description of the variety of components, in coordinates

In this subsection, we rephrase Theorem 6.16 in terms of coordinates. We let p1, . . . , pN be the
non-factorizable components and let d(1), . . . , d(N) be their respective degrees.

We assume for the whole subsection that k is algebraically closed. As explained in Paragraph 2.2.2,
we embed the set (SpecR)(k) of k-points of SpecR into the affine space kN . We denote by e1, . . . , eN
the basis elements of kN , each one corresponding to a non-factorizable component.

Definition 6.17. To each subgroup H ∈ SubG,D, we associate the following point of kN :

eH :=
∑

i such that ⟨pi⟩⊆H
ei.

Moreover, we introduce the notion of “(strict) weighted span” of a set of points:

Definition 6.18. Let {x1, . . . , xn} be a finite set of points of kN , decomposed in the standard basis:

xi =
N∑
j=1

ξi,jej .

The weighted span of {x1, . . . , xn} is the set:
N∑
j=1

n∑
i=1

λ
d(j)
i ξi,jej

∣∣∣∣∣∣ (λ1, . . . , λn) ∈ kn

 .
and the strict weighted span of {x1, . . . , xn} is its weighted span, minus the weighted span of any
proper subset, i.e.: 

N∑
j=1

n∑
i=1

λ
d(j)
i ξi,jej

∣∣∣∣∣∣ (λ1, . . . , λn) ∈ (k×)n
 .

Example 6.19. When the degrees d(i) are all equal, the weighted span of {x1, . . . , xn} is simply the
linear subspace of kN spanned by x1, . . . , xn. For a more interesting example, take N = 2, d(1) =
1, d(2) = r. The weighted span of the singleton {(1, 1)} is then the graph of x 7→ xr in k2.

We now use this terminology to rephrase Theorem 6.16 more explicitly:

Theorem 6.20. Under the hypotheses of Theorem 6.16, the k-points of the strata γ(H) admit the
following description, for each H ∈ SubG,D:

• The stratum γ(1) contains a single k-point, namely the origin (0, . . . , 0) ∈ kN .

• If H is nontrivial, then we can write H as the product of a free factor family H1, . . . ,Hk of non-
splitters. Then, the set of k-points of γ(H) ⊆ SpecR is, as a subset of kN , the strict weighted
span of the points eH1 , . . . , eHk

.

Proof. The case H = 1 is clear. We consider the case of a nontrivial subgroup H ∈ SubG,D. The
hypotheses imply that H admits a free factor family H1, . . . ,Hk of non-splitters. Let p0,1, . . . , p0,N(0)
be the non-factorizable components whose group is not contained in H and, for each i ∈ {1, . . . , k}, let
pi,1, . . . , pi,N(i) be the non-factorizable components whose group is contained in Hi. Since H1, . . . ,Hk

is a factor family, there are no other non-factorizable components, and since it is a free family these
lists do not overlap. We may assume that the k-points of SpecR, seen as points of kN (where
N = N(0) + N(1) + · · · + N(k)), have their coordinates xi,j (corresponding respectively to the non-
factorizable components pi,j) ordered in the following way:

( x0,1, . . . , x0,N(0)︸ ︷︷ ︸
non-factorizable components
of group not contained in H

, x1,1, . . . , x1,N(1)︸ ︷︷ ︸
non-factorizable components

of group contained in H1

, . . . , xk,1, . . . , xk,N(k)︸ ︷︷ ︸
non-factorizable components

of group contained in Hk

).
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Note that, for i ∈ {1, . . . , k}, the point eHi from Definition 6.17 has coordinates xi′,j =
{

1 if i = i′

0 otherwise.
The k-points of γ(H) are, in particular, k-points of V (J∗

H), and hence they satisfy x0,1 = · · · =
x0,N(0) = 0. By Proposition 6.14, the only additional condition that they satisfy is that, for each
i ∈ {1, . . . , k}, their projection on kN(i) via the morphism πHi , which is the point (xi,1, . . . , xi,N(i)) ∈
kN(i), must be a k-point of γ̃(Hi).

Let i ∈ {1, . . . , k}. By hypothesis, there is at most one component of group Hi for each degree
and each i ∈ {1, . . . , k}. Let d(i, j) denote the degree of the non-factorizable component pi,j . By
Theorem 6.2 (v) and Proposition 6.11 (ii), the k-points of γ̃(Hi) are then exactly the points of kN(i)

of the form (λd(i,1)
i , . . . , λ

d(i,N(i))
i ) for some λi ∈ k×.

Putting everything together, the k-points of γ(H) are the points of the form:

(0, . . . , 0︸ ︷︷ ︸
N(0)

, λ
d(1,1)
1 , . . . , λ

d(1,N(1))
1︸ ︷︷ ︸ , . . . , λd(k,1)

k , . . . , λ
d(k,N(k))
k︸ ︷︷ ︸) where λ1, . . . , λk ∈ k×.

The set of such points is exactly the strict weighted span of the points eHi , proving the claim.

6.5. An application: the case of symmetric groups

We now give a concrete example where the variety of components can be described (and even drawn)
using Theorem 6.20. In [Seg23, Chapter 6], we have focused on the following situation: G is the
symmetric group Sd for some d ≥ 2, the set D is the singleton containing the conjugacy class c
of transpositions, and ξ maps c to 1. A careful study of the action of braid groups on tuples of
transpositions [Seg23, Theorem 6.2.6] shows that the following properties hold:

• The non-factorizable components of CompP1(C)(Sd, {c}, 1) are the orbits of tuples (τ, τ) where
τ ∈ Sd is a transposition. In particular, there are d(d − 1)/2 non-factorizable components, all
of which have degree 2.

• The D-generated subgroups H of Sd are all of the form SA1 × · · ·SAk
for some partition

A1 ⊔ . . . ⊔ Ak of {1, . . . , d}. The factors SAi are shown to form a free factor family of H using
Proposition 6.9.

• If A is a subset of {1, . . . , d}, then the subgroup SA of Sd is a non-splitter, and for each even
degree n ≥ 2|A| − 2 there is exactly one component of group SA and of degree n.

In particular, the hypotheses of Theorem 6.16/6.20 are satisfied, which leads to a description of
the variety of components. We see it as embedded in the affine space k

d(d−1)
2 , where we index the

coordinates using pairs (i, j) with 1 ≤ i < j ≤ d. If A is a subset of {1, . . . , d}, we define:

eA :=
∑

1≤i<j≤d
i,j∈A

ei,j

Then, Theorem 6.20 implies:

Theorem 6.21. The subset (SpecR)(k) of k
d(d−1)

2 is the union of the vector spaces Spank(eA1 , . . . , eAk
)

over (maximal) families {A1, . . . , Ak} of disjoint subsets of {1, . . . , d}.

For the details, we refer to [Seg23, Section 6.4]. We now describe the set V := (ProjR)(k) ≃
(SpecR)(k)/k× for small values of d:

(d = 3) The set V embeds into P2(k): it consists of four points, corresponding to (the lines spanned by)
the points e1,2, e1,3, e2,3 and e1,2 + e1,3 + e2,3, i.e., to the subsets of {1, 2, 3} of size ≥ 2.
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(d = 4) The set V embeds into P5(k): it is the union of five points, corresponding to the points eA for
subsets A ⊆ {1, . . . , 4} of size ≥ 3, and of two lines, corresponding to the two pairs of disjoint
subsets of size 2.

(d = 5) The set V embeds into P9(k): it is the union of six points (for the subsets A ⊆ {1, . . . , 5} of
size ≥ 4), and of ten lines (for the pairs consisting of a subset of size 3 and its complement).

(d = 6) The set V embeds into P14(k): it is the (non-disjoint!) union of 22 points (for the subsets
of {1, . . . , 6} of size ≥ 4), of 10 lines (for the pairs of disjoint subsets of size 3) and of 15 planes
(for the triples of disjoint subsets of size 2).

Data availability statement. No data are associated with this article.
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