Interpretability of games A game (with two-players \mathbf{A} and \mathbf{B} , turn-based, with perfect information, without draws) is a rooted tree \mathcal{G} (usually infinite). We write \mathcal{G}^A for the set of nodes of even depth, including the root (it is \mathbf{A} 's turn to play), and \mathcal{G}^B for the set of nodes of odd depth (it is \mathbf{B} 's turn to play). We moreover require that every leaf belong to \mathcal{G}^A (otherwise, add an irrelevant single child to the corresponding node of \mathcal{G}^B), and we exclude the "trivial game" with a single node (i.e., the game where \mathbf{A} immediately loses before even playing). A play is a branch of \mathcal{G} , either ending with a leaf (in which case \mathbf{B} is declared to be the winner) or infinite (in which case \mathbf{A} is declared to be the winner). If \mathbf{x} is a node of a tree, we write $\mathbf{Ch}(\mathbf{x})$ for the set of (immediate) children of \mathbf{x} . ## 1. Interpretations The idea of an interpretation² (turn-for-turn³, from the perspective of A) is for A to translate states of a game into those of another game, so that they can pretend that they are playing the other game (but still perhaps win the original game!). B does not have to cooperate, so the translation must deal with whatever moves B decides to play. **Definition 1.1.** A subtree $\mathcal{G}_* \subseteq \mathcal{G}$ is a *subgame of* \mathcal{G} *obtained by restricting only the allowed moves of* \mathbf{A} if it is a subtree with the same root as \mathcal{G} , whose leaves are exactly the leaves of \mathcal{G} belonging to \mathcal{G}_* (so that \mathbf{A} is losing in \mathcal{G}_* only if they are also losing in \mathcal{G}), and any $x \in \mathcal{G}^B$ has the same children in \mathcal{G} and in \mathcal{G}_* . **Definition 1.2.** Consider two games \mathcal{G} and \mathcal{H} . We define an *interpretation* of \mathcal{H} in \mathcal{G} as a tuple (\mathcal{G}_*, f, f^*) where \mathcal{G}_* is a subgame⁴ of \mathcal{G} obtained by restricting only the allowed moves of \mathbf{A} , the translation map $f: \mathcal{G}_* \to \mathcal{H}$ is a map from the nodes of \mathcal{G}_* to those of \mathcal{H} , and for each $x \in \mathcal{G}_*^A$, the reverse translation map f_x^* is a map $\mathrm{Ch}(f(x)) \to \mathrm{Ch}(x) \cap \mathcal{G}_*$ (each legal move of \mathbf{A} in the interpreted game is reverse translated into a legal move in the original game), such that: - f maps the root to the root, maps \mathcal{G}^A_* to \mathcal{H}^A and \mathcal{G}^B_* to \mathcal{H}^B , and maps leaves to leaves (a loss is translated into a loss) - for any $x \in \mathcal{G}^A_*$, the map $f \circ f^*_x$ is the identity of $\operatorname{Ch}(f(x))$ - for any $x \in \mathcal{G}^B_*$, we have $f(\operatorname{Ch}(x)) \subseteq \operatorname{Ch}(f(x))$ (each legal move of **B** in the original game is translated into a legal move in the interpreted game) **Example 1.3.** Each game \mathcal{G} interprets itself trivially via the *identity interpretation* $\left(\mathcal{G}, \operatorname{id}, \left(\operatorname{id}_{\operatorname{Ch}(x)}\right)_{x \in \mathcal{G}}\right)$. More generally, any isomorphism of games induces an interpretation. $^{^{1}}$ The goal for **A** is thus to ensure infinite play. For instance, any finite game without draws can be transformed into such a game by giving "useless" legal moves to each player once **A** has won. ²Perhaps words like *simulation*, *emulation*, or *reduction* make more sense, but my starting point was an analogy with interpretability of first order theories. This analogy works as follows: if one sees proving a given statement as some sort of one-player game, so that strategies correspond to proofs, then the fact that a theory is interpretable in another means that it suffices to prove a statement ("play the game") in the theory which is interpretable (e.g., establishing an arithmetic statement in ZFC by instead proving it in PA). ³Instead, one could play the interpreted game via *sequences* of moves in the interpreting game. Of course, one runs into the issue that we need to account for **B**'s reactions, hence it is more like a "short-term strategy" than an actual sequence of moves. Moreover, one must ensure that the final result of this short-term strategy translates into a single state of the interpreted game independently of **B**'s play. $^{^4}$ The reason for not taking all of $\mathcal G$ is that we do not require that we have a translation of the states which we do not intend to reach. (For instance, maybe it is not always possible to translate $\mathbf B$'s moves, but $\mathbf A$ keeps playing a subgame where this is possible.) **Example 1.4.** If \mathcal{G}_* is a subgame of \mathcal{G} obtained by restricting only the allowed moves of \mathbf{A} , then \mathcal{G}_* is interpreted in \mathcal{G} via $\left(\mathcal{G}_*, \mathrm{id}, \left(\mathrm{id}_{\mathrm{Ch}(x)}\right)_{x \in \mathcal{G}^A}\right)$. **Example 1.5.** If \mathcal{H} is a game obtained from \mathcal{G} by extending only the allowed moves of \mathbf{B} (i.e., $\mathcal{G} \subseteq \mathcal{H}$ and any $x \in \mathcal{G}^A$ has the same children in \mathcal{G} and in \mathcal{H}) and without changing the leaves, then \mathcal{H} is interpreted in \mathcal{G} via (\mathcal{G}, f, f^*) , where f is the inclusion $\mathcal{G} \to \mathcal{H}$, and $f_x^* : \operatorname{Ch}(f(x)) \to \operatorname{Ch}(x)$ is the identity map for each $x \in \mathcal{G}^A$ (we have $\operatorname{Ch}(f(x)) = \operatorname{Ch}(x)$ by hypothesis). Example 1.4 and Example 1.5 have an intuitive explanation: if they want to do so, **A** can be play "pessimistically", assuming that they have less allowed moves than they actually do, and assuming that **B** has more moves than they actually do. Indeed, if **A** finds a way to win even under these pessimistic assumptions (which both work against them), then they have in particular found a way to win in the real game. This principle is formalized in what follows. ## 2. Strategies and interpretations Let $\mathcal G$ be a game. A *strategy* of $\mathcal G$ (for $\mathbf A$) is a partial map $\sigma:\mathcal G^A\to\mathcal G^B$ such that $\sigma(x)\in\operatorname{Ch}(x)$ whenever it is defined. We say that σ is a *winning strategy* if the value of $\sigma(x_n)$ is defined (in particular, x_n is not a leaf) for any finite sequence $x_1,x_2,...,x_n\in\mathcal G^A$ where x_1 is the root of $\mathcal G$ and $x_{i+1}\in\operatorname{Ch}(\sigma(x_i))$ for all $1\leq i< n$. Let (\mathcal{G}_*,f,f^*) be an interpretation of a game \mathcal{H} in a game \mathcal{G} , and let $\sigma:\mathcal{H}^A\to\mathcal{H}^B$ be a strategy of \mathcal{H} . For any $x\in\mathcal{G}^A$ such that $\sigma(f(x))$ is defined, we define $(f^*\sigma)(x):=f_x^*(\sigma(f(x)))\in\operatorname{Ch}(x)\cap\mathcal{G}_*$. This defines a strategy $f^*\sigma$ of \mathcal{G} (a partial map $\mathcal{G}^A\to\mathcal{G}^B$), which we call the *pullback of* σ *by the interpretation*. **Proposition 2.1.** The pullback of a winning strategy σ by an interpretation (\mathcal{G}_*, f, f^*) is a winning strategy. In particular, if \mathcal{H} is interpreted in \mathcal{G} and admits a winning strategy, then so does \mathcal{G} . Proof: By definition of an interpretation, we have $f((f^*\sigma)(x)) = \sigma(f(x))$ for any $x \in \mathcal{G}^A$ such that $\sigma(f(x))$ is defined. Consider a finite sequence $x_1, x_2, ..., x_n \in \mathcal{G}^A$, where x_1 is the root of \mathcal{G} and $x_{i+1} \in \operatorname{Ch}((f^*\sigma)(x_i))$ for all $1 \leq i < n$. Then, $f(x_1), f(x_2), ..., f(x_n) \in \mathcal{H}^A$ is a finite sequence for \mathcal{H} where $f(x_1)$ is the root of \mathcal{H} and $f(x_{i+1}) \in \operatorname{Ch}(\sigma(f(x_i)))$ by definition of an interpretation and of $f^*\sigma$. Since σ is winning, $\sigma(f(x_n))$ is defined, and thus $(f^*\sigma)(x_n)$ is also defined, so $f^*\sigma$ is a winning strategy. # 3. The category of games and interpretations We can compose interpretations: if (\mathcal{G}_*, f, f^*) is an interpretation of \mathcal{H} in \mathcal{G} and (\mathcal{H}_*, g, g^*) is an interpretation of \mathcal{I} in \mathcal{H} , then $\left(f^{-1}(\mathcal{H}_*), g \circ f, \left(f_x^* \circ g_x^*\right)_{x \in \mathcal{G}^B \cap f^{-1}(\mathcal{H}_*)}\right)$ is an interpretation of \mathcal{I} in \mathcal{G} . Hence, there is a category Interp of games, where a morphism $\mathcal{G} \to \mathcal{H}$ is an interpretation of \mathcal{H} in \mathcal{G} , and the identity morphisms are given by the identity interpretations. **Proposition 3.1.** Let $\mathcal G$ and $\mathcal H$ be two games. Assume that they are isomorphic in Interp, i.e., that there are two interpretations $(\mathcal G,f,f^*):\mathcal G\to\mathcal H$ and $(\mathcal H,g,g^*):\mathcal H\to\mathcal G$ whose compositions (in both directions) are the respective identity interpretations. Then, $\mathcal G$ and $\mathcal H$ are isomorphic as games. *Proof*: First, we must have $f^{-1}(\mathcal{H}_*) = \mathcal{G}$ and $g^{-1}(\mathcal{G}_*) = \mathcal{H}$, which implies $\mathcal{G} = \mathcal{G}_*$ and $\mathcal{H} = \mathcal{H}_*$. Since $f \circ g = g \circ f = \mathrm{id}$, the maps f and g are inverse bijections between the nodes of \mathcal{G} and those of \mathcal{H} . It suffices to show that f and g are morphisms of trees, i.e., that f(y) is a child of f(x) whenever y is a child of x, and similarly for g. As the cases of f and g are symmetric, we focus on f. If $x \in \mathcal{G}^B$, then $f(\operatorname{Ch}(x)) \subseteq \operatorname{Ch}(f(x))$ by definition of interpretations. We now assume that $x \in \mathcal{G}^A$. Let $x' = f(x) \in \mathcal{H}^A$, so that x = g(x'), and then by definition of an interpretation we have $g(g_{x'}^*(y)) = y$ for any $y \in \operatorname{Ch}(x)$, meaning that $f(y) = g_{x'}^*(y)$ belongs to $\operatorname{Ch}(x') = \operatorname{Ch}(f(x))$. For example, Proposition 2.1 implies that the map that takes a game to the set of its winning strategies defines a contravariant functor from Interp to Set, i.e., a presheaf on Interp. ## 4. The interpretability preorder If there is an interpretation of \mathcal{H} in \mathcal{G} , we say that \mathcal{H} is *interpretable* in \mathcal{G} , and we write $\mathcal{H} \leq \mathcal{G}$: this defines a partial preorder on games. **Example 4.1.** Consider any game $\mathcal G$ with no leaves (i.e., a game where $\mathbf A$ always wins). In particular, there exists an infinite branch $\mathcal H\subseteq \mathcal G$. Consider the map $f:\mathcal G\to \mathcal H$ taking any node to the unique node of $\mathcal H$ with the same depth. If $x\in \mathcal G$ has depth i, then $f(\operatorname{Ch}(x))$ and $\operatorname{Ch}(f(x))$ both consist of the unique element y of $\mathcal H$ of depth i+1. (In particular, a reverse translation map f_x^* is given by any choice of a child of x, whose image by f will automatically coincide with y.) Hence $\mathcal H \subseteq \mathcal G$. #### 4.1. Minimal games We say that a game is *minimal* (for \leq) if \mathcal{G} is interpretable in any game interpretable in \mathcal{G} . In what follows, we denote by \mathcal{L} the "losing game" where **A** and **B** each play a forced move, then **A** loses: #### **Proposition 4.2.** \mathcal{L} is interpretable in any game \mathcal{G} . *Proof*: Define a map $\mathcal{G} \to \mathcal{L}$ as follows: the root is mapped to the root, all nodes in \mathcal{G}^B are mapped to x, and all nodes in \mathcal{G}^A besides the root are mapped to y. Let $$v \in \mathcal{G}^B$$. Then, $f(\operatorname{Ch}(v)) \subseteq f(\mathcal{G}^A \setminus \operatorname{root}) = \{y\}$, and $\operatorname{Ch}(f(v)) = \operatorname{Ch}(x) = \{y\}$, so $f(\operatorname{Ch}(v)) \subseteq \operatorname{Ch}(f(v))$. Now, let v be the root of \mathcal{G} . Then, we can pick any reverse translation map f_{root}^* mapping x to any child of the root of \mathcal{G} , and then $f \circ f_{\text{root}}^* = \text{id}$ is automatically true. Finally, if $v \in \mathcal{G}^A \setminus \text{root}$, then $\text{Ch}(f(x)) = \emptyset$, so the corresponding translation map is the trivial map and $f \circ f_v^* = \text{id}$ is vacuously true. As a consequence, a game is minimal if and only if it is interpretable in \mathcal{L} . **Proposition 4.3.** The games which are interpretable in \mathcal{L} (and, hence, the minimal games) are exactly the games of the following form (the first move of **A** is forced, and then **B** has the possibility to win in one): where $\{T_1, T_2, ...\}$ is a set of games (possibly empty). Equivalently, these are the games obtained from \mathcal{L} by extending only the allowed moves of **B**. *Proof*: The conditions that an interpretation (\mathcal{L}_*, f, f^*) of \mathcal{G} in \mathcal{L} must satisfy are: - $\mathcal{L}_* = \mathcal{L}$ (there are no proper subgames of \mathcal{L} obtained by restricting the allowed moves of \mathbf{A}) - f maps the root of $\mathcal L$ to the root of $\mathcal G$, x to some $f(x) \in \mathcal G^B$, and y to some leaf $f(y) \in \mathcal H^A$. - the reverse translation map f_{root}^* is constant, equal to x, so the root of $\mathcal G$ must have f(x) as its single child. - we must have $f(y) \in Ch(f(x))$, so the leaf f(y) is a child of f(x). This intuitively makes sense: a minimal game is a game where \mathbf{A} is "as pessimistic as possible", which indeed corresponds to there being an immediate way for \mathbf{B} to win. Similarly, if we classify games which are minimal among the games for which \mathbf{B} does not have a winning strategy, these would certainly be games for which any single mistake of \mathbf{A} leads to \mathbf{B} winning in one move. #### 4.2. Classification of maximal games A game \mathcal{G} is *maximal* (for \leq) if any game in which \mathcal{G} is interpretable is itself interpretable in \mathcal{G} . [**TODO:** Up to mutual interpretability, the only maximal game is the following game \mathcal{W} : **A** always has infinitely many moves, **B** always has a single move, and there are no leaves (**A** always wins). We shall in fact show that \mathcal{W} interprets any game. Indeed: take a game \mathcal{G} , it is interpreted in a game where **B** has a single move by Example 1.5, so we can assume that this is the case for \mathcal{G} . Now, \mathcal{G} can be embedded in \mathcal{W} , so we fix such an embedding. We let \mathcal{G}' be obtained by replacing each leaf of \mathcal{G} by a copy of \mathcal{W} . \mathcal{G}' is obtained from \mathcal{W} by restricting only the moves of **A**, so it suffices now to show that \mathcal{G}' interprets \mathcal{G} . For this, define the map f extending the identity of \mathcal{G} by mapping each remaining node of \mathcal{G}' to either the leaf above it (if it is in \mathcal{G}'^A), or the parent of that leaf (if it is in \mathcal{G}'^B) Intuitively: the most optimistic that **A** can be is to assume that they can play whatever and still win.]