NILPOTENT ARTIN-SCHREIER THEORY
OBERSEMINAR NUMBER THEORY AND ARITHMETICAL STATISTICS

OCTOBER 16TH, 2024

A prime number p is fixed. If F'is a field, we denote by I'p := Gal(F*®°P|F') its absolute Galois
group.

1. PARAMETRIZATION OF EXTENSIONS IN CHARACTERISTIC p

We fix a group G and a field F' of characteristic p.

1.1. Extensions and cohomology classes.

Definition 1.1. A G-extension of F is an étale F-algebra K together with an action of G,
such that there is a G-equivariant F*°P-algebra isomorphism between K ®p F*P and the ring
of maps f : G — FP (on which G acts via (g.f)(h) = f(hg)). An isomorphism between two
G-extensions of F' is a G-equivariant isomorphism between the corresponding étale F-algebras.

We denote the set of isomorphism classes of G-extensions of F' by EtExt(G , I), often confusing
an element of EtExt(G , F') with a representative K of the corresponding isomorphism class, and
denoting by Aut(K) the group of its G-equivariant F-algebra automorphisms.

The set EtExt(G, F) is in natural bijection with the cohomology set H(I'r, @), i.e., the
set of conjugacy classes of continuous group homomorphisms v : I'r — G.! The stabilizer
Stabg () of such a homomorphism v : I'r — G with respect to the conjugation action of G is
the centralizer of the image of v in G. Moreover, if an extension K € EtExt(G, F) corresponds
to [y] € HY(I'r, G), then Aut(K) = Stabg(7), and K is a field if and only if v is surjective.

1.2. The general parametrization principle. We describe a principle for parametrizing G-
extensions of F, following the general method used in [WY92] and [BG14, Proposition 1]. For
this, we make the following definition:

Definition 1.2. An F-geometrization of G is a group Gpser equipped with an action of U'r and
a I' p-equivariant group homomorphism o : Gpseo — Gpsep, such that:

o The subgroup of o-invariant elements of Gpser is exactly G;
o The subgroup of I p-invariant elements of Gser, which we denote by Gp, contains G.

The multiplicative Artin—Schreier map of Gpser s the I'p-equivariant map @ : Gpseo — G psep
defined by g — o(g)g~".

Ezxample 1.3. Let G be an algebraic group over F,,. The group G(F*°?), equipped with its natural
I' p-action and Frobenius o, is an F-geometrization of G(F,). This is the situation the definition
is trying to generalize.

Lyg ¢ : I'r — G is a morphism, let K be the fixed sub-F-algebra of Maps(G, F*°?) under the action of I'w
defined by (0.f)(h) = o(f(p(c) " h)). Let f € K. The relation f(p(o) 'h) = o~ !(f(h)) implies that the value
of f on each orbit under left multiplication by Im(y) is determined by a single element of F*°P. For o € ker(yp),
the relation f(h) = o~ '(f(h)) implies that f takes values in the fixed subfield F’ := (F*°P)*(¥)  Hence the
algebra K is isomorphic to the G-extension Maps(Im()\G, F’).

Conversely, if K is a G-extension, consider a field F’ which is a factor of K and let H be the subgroup
of I'r fixing it. We can show (using the fact that K @ F*® ~ Maps(G, F*°P)) that F’ is a Galois extension
of F, whose Galois group is the subgroup G’ of G preserving it, so that we have an isomorphism I'r/H ~ G’,
inducing a homomorphism I'r — G (of kernel H and image G’). Choosing another factor gives a conjugate
homomorphism, as G acts transitively on the set of factors of K (because it acts transitively on the set of factors
of K ® F*°P ~ (F*®)I¢l and each factor of K corresponds to at least one of these factors).
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We fix an F-geometrization G gsep of G. Note that, as the actions of ¢ and I'r commute, we
have 0(Gr) C Gp. We define an action of Gpsep on itself by the formula:

gm = a(g)ymg .
Note that g.1 = p(g). This action restricts to an action of G on itself, whose set of orbits we
denote by Gr/c,. We now prove:

Proposition 1.4. There is a bijection between the set of G p-orbits of elements of GpNg(G psep )
and the kernel of the map of pointed sets H'(I'p,G) — HY(T'p, Gpsep) (in non-abelian group
cohomology).

Proof. Let m € Gr N p(Gpsev). We fix a g € Gpser such that p(g) = m. We define a 1-
coboundary 7, : I'r — Gpser by the formula v,(7) = g~ (g). We show that v, is valued in G,
i.e., that v4(7) is o-invariant for all 7 € T'p:

a(9()) = o9~ 7(9))
=g 'm~tr(un_g)
eGp
=g '7(9).
Therefore, -, defines a l-coboundary I'r — G, i.e., a group homomorphism (the action is
trivial). Note that its image in H! (T g, Gsep ) is trivial by definition. If § € G psepr was a different
element such that @(g) = m, then the equality g(g) = g(g) rewrites as o(g~'g) = g 'g, i.e.,
there is a § € G such that g = gd. But then:

v9(T) =g '7(g) = 69 T (9)0 = 6 (1),
showing that -y, and 75 are conjugate group homomorphisms I'r — G, and thus define the same
element in ker(H'(T'r, G) — H'(T'p, Gpser)), which therefore only depends on m. Now assume
that m’ € GpNg(Gpser) is in the same G p-orbit as m, for example m’ = p.m for some u € Gp.
Let ¢’ = pg, and note that go(g') = p.p(g) = p.m =m’. We have:

Vg () = g‘lu‘lT(\u/g) =g '7(g) = (1)

eGp

showing that the element of ker(H(T'r, G) — H*(T'r, Gpser)) associated to m only depends on
its Gp-orbit. We have constructed the desired map. It remains to see that it is a bijection.

Surjectivity. Let v : 'z — G be a group morphism whose image in H*(I', G psep ) is trivial,
i.e., there is some g € Gpser such that (1) = g~ 17 (g) for all 7 € T'p. Let m = p(g). We show
that m € G by showing that it is I'p-invariant:

vr €Tp, 7(m)=1(0(g)g™") = a(r(9))7(9) ™ = algy(r)y(r) g™ =
eG

o(g)g~' =m.

Therefore, m is an element of G N (G pser) and, by construction, it is mapped to the coho-
mology class of ~.

Injectivity. Let m,m’ be elements of Gg N @(Gpser) defining the same cohomology class
in ker(H'(Tp,G) — HY(Tr,Gpsep)). Pick elements g,g' € Gpser such that m = gp(g) and
m' = p(g'), and define v := 7+ g7 '7(g) and ¥ := 7+ (¢')"'7(¢'). By hypothesis, there is a
§ € G such that 7/ = 6~1y5. We obtain:

vrelr, (9)7'7(g)=0""g7"7(9)0
which rewrites as:
vrelr, (¢)7'r(g)=0""9""(9) 0
€eGCGrp

The element 1 := ¢’d~'g~! is then I'p-invariant, and hence belongs to Gr. We have ¢’ = ugd
and therefore:

D)0 g = pep(g) = pem
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showing that m and m’ are in the same Gg-orbit. (]

Definition 1.5. We say that Gpser satisfies (Trans) if Gp C @(Gpsep). We say that G psep
satisfies (H90) if the map of pointed sets H'(T'p,G) — HY (T g, Gpsen) is trivial.

Note that (Trans) ensures that the set of Gp-orbits of elements of Gp N (G pser) is sim-
ply Gr/c, and that (H90) ensures that kernel of the map H'(Tr,G) — H'(Tp, Gpser) is
all of H'(I'r, G). By the remarks of Subsection 1.1, H!(I'r, @) is in bijection with the set of
isomorphism classes of G-extensions of F. We obtain the following corollary:

Corollary 1.6. Assume that Gpsep satisfies both (Trans) and (H90). Then, there is a bijection
EtEXt(G, F) YR Grllay-

Example 1.7. The result of Corollary 1.6 specializes to well-known theories:

e The group W (F*®°P) of Witt vectors over F*P is an F-geometrization of Z,: we retrieve
Artin—Schreier-Witt theory. The case of Witt vectors of length 1 yields back ordinary
Artin—Schreier theory.

e The group GL, (F*P) is an F-geometrization of GL,(F,): we retrieve the theory of
étale p-modules of dimension n (cf. [FO22, Subsection 3.2], and notably Remark 3.24).
In particular, the case n = 1 gives a special case of Kummer theory, namely the
parametrization of Z/(q — 1)Z-extensions.

2. p-GROUPS AND LIE ALGEBRAS
2.1. Definitions.

Definition 2.1. A Lie Zy-algebra is a Z,-module L equipped with a Lie bracket [o, 0] : L? — L
which is Zy-bilinear, alternating, and satisfies the Jacobi identity:

[[a,b], ] + [[b, ], a] + [[¢, a], b] = 0.

We say that L is abelian if its Lie bracket is identically zero. An ideal of L is a submodule 1
such that [L,I] C I. The center of L is the ideal Z(L) formed of elements x such that [L,x] = 0.

Let L be a Lie Zy-algebra. We can form the quotient of L by an ideal I to obtain a Lie

algebra L/I. For elements z1,...,z, € L, we use the notation
[z1,. .. xp] = [+ [[21, z2], 23], . . ., Ta).
——
n—1
We say that L is nilpotent if there exists an integer n such that [z1,...,x,+1] vanishes for all
1y ..., Tnt+1 € L. The smallest such n is then the nilpotency class of L. If L has nilpotency

class n > 1, then the quotient L/Z(L) has nilpotency class n — 1.

Ezxample 2.2. Only the trivial Lie algebra L = 0 has nilpotency class 0. Lie algebras of nilpotency
class 1 are abelian Lie algebras. Lie algebras of nilpotency class 2 are nonabelian Lie algebras L
for which L/Z(L) is abelian, i.e., [L, L] C Z(L).

2.2. The Lazard Correspondence. Let L be a Lie Z,-algebra of nilpotency class < p. We
define a group law o on L via the truncated Baker-Campbell-Hausdorff formula:

*1[ ] *1[ ]_*1[ ]
zoy:=x+y+ -|z,y + z T,Y,T) + ...
Y Y D) Y 12 Y Y 12 Y,

where the sum is including only the finitely many terms of the Baker-Campbell-Hausdorff for-
mula which do not involve p-th commutators, thus involving only denominators coprime to p.
For instance, for groups of nilpotency class < 2 (in odd characteristic), the formula simplifies
toxoy=z+y+ %[x,y], and in this case the Lie bracket is determined by the law o via
[z,y] =xoyo(—x)o(—y). The operation transforming the Lie algebra L into the group (L, o)
leads to the Lazard correspondence, which is an equivalence of categories:

{p-groups of nilpotency class < p} <— {finite Lie Zy-algebras of nilpotency class < p}.
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This correspondence was introduced by Lazard in [Lazb4] (see also [CGV12] or [Abr98, section
1.2]), and it may be seen as analogous to the classical Lie correspondence (between Lie groups
and Lie algebras).

Subgroups of (L, o) correspond to subalgebras of L, normal subgroups correspond to ideals
(the quotients then correspond to each other), and the center of the Lie algebra L is also the
center of the group (L, o). Note that L is an abelian Lie algebra if and only if (L, o) is abelian,
in which case the laws + and o coincide.

3. NILPOTENT ARTIN-SCHREIER THEORY

3.1. Lifts in characteristic zero. We need an additional tool, which is constructed in [BM90,
Subsection 1.1]:

Theorem 3.1. Let F be a field of characteristic p. There exists a Zy-algebra O(F'), unique up
to isomorphism, such that:

e O(F)/pO(F) ~ F

e O(F) is p-adically complete, i.e., O(F) = l'&nO(F)/p”O(F)

e O(F) is flat over Zy, i.e., O(F) has no non-zero p-torsion elements.

The ring O(F) can be constructed as a subring of W (F), such that p*O(K) = O(K) N
Ver® (W (K)), where k > 0 and Ver is the Verschiebung map. If F’|F is a Galois extension of
fields of characteristic p, the Galois group Gal(F’|F') acts naturally on O(F”), and the subring of
invariant elements is precisely O(F). Moreover, the Frobenius map can be lifted into a Zy-linear
map o : O(F) — O(F) (reducing to o :  — zP modulo p) whose fixed points are exactly the
elements of Z,,.

Ezample 3.2. Let k be a perfect field. Then, O(k) = W (k), O(k(t))) = W(k)((t)), and O(k(t))
is the p-adic completion of the localization of W (k)[t] at (p).

3.2. Nilpotent Artin—Schreier theory. Let G be a p-group of nilpotency class < p. The
Lazard correspondence gives a natural candidate for an F-geometrization of G to which Corol-
lary 1.6 can be applied. Indeed, consider the finite Lie Z,-algebra L corresponding to G, and
define Gpsep := (L ® O(F*®P), 0), equipped with its natural I'p-action and Frobenius o.

Proposition 3.3. Gpsep is an F-geometrization of G satisfying (Trans) and (H90).

Proof. We have (Gpser)” = (L ® O(F,),0) = (L,0) = G. Note also that (Gpsep)'F = (L ®
O(F),0). Instead of proving (Trans), we prove the stronger claim that @(Gpser) = Gpsep.
Instead of proving (H90), we prove the stronger claim that H'(I'z, G psep) is trivial.

We first deal with the case L = Z/pZ, in which case Gpsep is simply the additive group FP.
Showing that g is surjective requires checking that, for each = € F®°P, there is a y € F*°P such
that * = o(y) — y. Since x = o(y) — y is a separable polynomial equation in y, this is clear.
The fact that H(T' g, F*°P) = 1 follows from [Ser62, Chap. X, §1, Prop. 1].

We now prove both the triviality of H!(I'r, Gpsep) and the surjectivity of g by induction
on the size of L. Assume that L is nonzero, and choose a subalgebra I in the center of L,
isomorphic to Z/pZ. Let @ = L/I. We have the exact sequence:

0=-I—->L—-Q—0

by flatness of O(F*®°P) and properties of the Lazard correspondence, it induces an exact sequence
(of groups equipped with a I"p-action):

1 —— (I ®z, O(F*®P),0) —— (L ®z, O(F*%P),0) —— (Q ®z, O(F*P),0) —— 1
U
Frsep
We obtain the following exact sequence in non-abelian Galois cohomology:
H'(Tp, F**?) — H'(T'p, (L ®z, O(F*P),0)) = H'(I'r, (Q ®z, O(F*P),0)).
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We have H!'(I'p, F*P) = 1 by the case L = Z/pZ and H'(T'p,(Q ®z, O(F*P),0)) = 1 by
induction hypothesis, so that H'(I'p, (L ®z, O(F5P),0)) = 1.

We now show the surjectivity of p. Let 2 € L ®z, O(F*P), and let T be its projection in
Q ®z, O(F*?). By induction hypothesis, there is a § € Q ®z, O(F*®P) such that g(y) = Z.
Choose an arbitrary lifting yo € L ®z, O(F*P) of 5. Then x — p(yo) belongs to I ®z, O(FP)
and hence, by the case L = Z/pZ, there is a z € I ®z, O(F*P) such that z = g(yo) + ().
As z is central, we have:

z = 0o(yo) e (—yo)oo(z)o(=2) = o(yo) oo (2)o(=yo)oo(=2) = a(yo+2) o (—yo— 2) = p(yo +2)
establishing the surjectivity of g. U
We define a left action of (L ® O(F'),0) on L ® O(F) by:

gm :=oc(g)omo (—g).
We write L ® O(F)/lo(ry for the set of (L @ O(F'), o)-orbits of L ® O(F).

Theorem 3.4 (Parametrization). There is a bijection between the sets EtExt(G, F) and L ®
O(F)/Jory- Moreover, if K|F is a G-extension of F' and if m € L ® O(F') is an element of the
orbit corresponding to K, then Stab(rgo(r).0)(m) = Aut(K).

Proof. The first part follows from Corollary 1.6 and Proposition 3.3. For the second part, let
g € L ® O(F*P) be such that m = ¢.0, so that a homomorphism v : I'r — (L, o) associated
to K is given by 7+ (—g) o 7(g). As we remarked in Subsection 1.1, we have an isomorphism
Aut(K) =~ Stab(y, oy (7). For all h € L, we have:

h € Stab,)(7) <= V7 €'p, ho(=g)oT(g)o (=h) =(—-g)o7(9)

> Vrelp, 7(go(=h)o(=g)) =go(=h)o(-g)
< go(—h)o(—g) € L& O(F).
Therefore, conjugation by g defines an isomorphism between Stab(;, o)(7) and the subgroup of

L ® O(F) formed of elements h’' such that (—g) o (—h') o g € L. To conclude, it suffices to show
that the latter set coincides with Stab(zgo(r),0)(m). Let b’ € L ® O(F). We have:

W' € Stab(rgo(r)0)(m) <= o(h)omo (—h)=m
<= o(h)oo(g)o(—g)o(~h)=0(g)o(~g)
> (=g)o(=h)og=0((=g)o(=h)og)
<= (—g)o(=h)oge L. O
Ezample 3.5 (Artin—Schreier theory). The abelian Lie algebra L = Z/pZ corresponds to the

cyclic group (L,0) = Z/pZ. We have L ® O(F) = F. The action of L ® O(F') on itself is given
by z.m = m + 2P — z for m,x € F. We recover Artin—Schreier theory for Z/pZ-extensions.

Remark 3.6. Finite p-groups/Lie Z,-algebras can be replaced by pro-p-groups and profinite Lie
Z,-algebras everywhere.

Remark 3.7. Let F' be a local field of characteristic p. Using a “fundamental domain” to
minimize the redundancy of the parametrizations above, Abrashkin describes an explicit iso-
morphism between:

e the quotient of the wild quotient of I' by its p-th commutators;

e (L,0), where L is the quotient of the profinite free Lie Z,-algebra with countably many

generators by its p-th commutators.

The main advantage of this description over the traditional description of I'r ([Koc67]) is that
Abrashkin computes the ideals corresponding to the ramification filtration, giving us access to
invariants like the discriminant.
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