

Project A4 – Combinatorial Euler products

Béranger Seguin February 20, 2025

Context: Counting problems

We count certain algebraic/arithmetic objects x according to an invariant invariant(x) $\in \mathbb{N}$:

$$|\{x \mid \text{invariant}(x) \leq X\}| \underset{X \to \infty}{\sim} ???$$

Context: Counting problems

We count certain algebraic/arithmetic objects x according to an invariant invariant(x) $\in \mathbb{N}$:

$$|\{x \mid \text{invariant}(x) \leq X\}| \underset{X \to \infty}{\sim} ???$$

Examples:

- ► field extensions (e.g., by discriminant)
- representations of arithmetic groups (by degree)

Context: Counting problems

We count certain algebraic/arithmetic objects x according to an invariant invariant(x) $\in \mathbb{N}$:

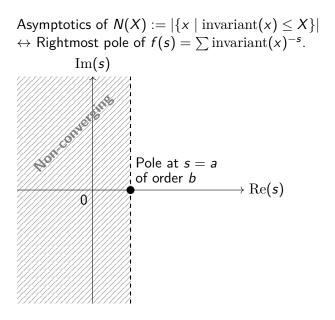
$$|\{x \mid \text{invariant}(x) \leq X\}| \underset{X \to \infty}{\sim} ???$$

Examples:

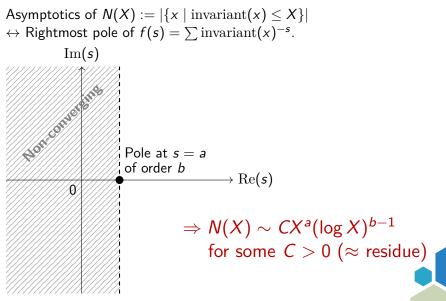
- ▶ field extensions (e.g., by discriminant)
- representations of arithmetic groups (by degree)
- A general method: study the Dirichlet series

$$f(s) := \sum_{x} \operatorname{invariant}(x)^{-s}.$$

Tauberian theorems



Tauberian theorems



Local-global principles

Assume that we are counting objects over a number field K.

The field *K* has "places", i.e., completions. Example over \mathbb{Q} :

Places	Archimedean	Primes (non-Archimedean)								
Flaces	∞	2	3	5	7	11				
Completions	\mathbb{R}	\mathbb{Q}_2	\mathbb{Q}_3	\mathbb{Q}_5	\mathbb{Q}_7	\mathbb{Q}_{11}				

Local-global principles

Assume that we are counting objects over a number field K.

The field *K* has "places", i.e., completions. Example over \mathbb{Q} :

Places	Archimedean	Primes (non-Archimedean)							
Flaces	∞	2	3	5	7	11			
Completions	\mathbb{R}	\mathbb{Q}_2	\mathbb{Q}_3	\mathbb{Q}_5	\mathbb{Q}_7	\mathbb{Q}_{11}			

Counting is easier over completions as we have analytic tools (Intermediate value theorem over \mathbb{R} , Hensel's lemma over \mathbb{Q}_p)

Local-global principles

Assume that we are counting objects over a number field K. The field K has "places", i.e., completions. Example over \mathbb{Q} :

Archimedean Primes (non-Archimedean) Places 2 3 5 11 ∞ . . . R Completions \mathbb{O}_2 Ŵз Ŵъ O7 \mathbb{O}_{11}

Counting is easier over completions as we have analytic tools (Intermediate value theorem over \mathbb{R} , Hensel's lemma over \mathbb{Q}_p)

A "global" object (over K) \sim "local" objects (over completions). Sometimes, this works backwards (**local–global principle**).

Local–global principles

Assume that we are counting objects over a number field K. The field K has "places", i.e., completions. Example over \mathbb{O} :

Places	Archimedean	Primes (non-Archimedean)								
	∞	2	3	5	7	11				
Completions	\mathbb{R}	\mathbb{Q}_2	\mathbb{Q}_3	\mathbb{Q}_5	\mathbb{Q}_7	\mathbb{Q}_{11}				

Counting is easier over completions as we have analytic tools (Intermediate value theorem over \mathbb{R} , Hensel's lemma over \mathbb{Q}_p)

A "global" object (over K) \sim "local" objects (over completions). Sometimes, this works backwards (**local–global principle**). In this case, f(s) factors as a **combinatorial Euler product**:

$$f(s) = \prod_{p ext{ place of } K} f_p(s).$$

where f_p counts local objects. We can then study the poles by comparison with classical Euler products, e.g., L-functions.

An example:

Count extensions of non-commutative fields/simple algebras.

Counting non-commutative extensions

We focus on finite-dimensional simple \mathbb{Q} -algebras.

We focus on finite-dimensional simple $\mathbb Q\text{-algebras}.$

► There is a non-commutative version of Galois theory!

We focus on finite-dimensional simple \mathbb{Q} -algebras.

- ► There is a non-commutative version of Galois theory!
- ► There is a well-defined notion of discriminant!

We focus on finite-dimensional simple \mathbb{Q} -algebras.

- ► There is a non-commutative version of Galois theory!
- ► There is a well-defined notion of discriminant!
- Made accessible by class field theory: Central simple algebras (=CSAs) over number fields are well-understood and satisfy a local-global principle.

Let's count quaternion algebras over $\mathbb{Q}!$ (CSAs of dim. 4)

Let's count quaternion algebras over $\mathbb{Q}!$ (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

Places	Archimedean				Primes (non-Archimedean)						
Flaces	∞	2	3	5	7	11					
Example 1			Х		Х						
Example 2	Х		X		X	Х					

I had a third example, but...

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

Places	Archimedean	Primes (non-Archimedean)						
Flaces	∞	2	3	5	7	11		
Example 3	9-19-19-19-19-19-19-19-19-19-19-19-19-19	Х		Х		Х		

Unfortunately, the elephants are passing by and hiding a cell... Can you see behind the elephants?

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

Places	Archimedean	Primes (non-Archimedean)						
Flaces	∞	2	3	5	7	11		
Example 3	Х	Х		Х		Х		

Well done!

 \Rightarrow We can ignore both the place at ∞ and the parity condition.

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

⇒ We can ignore both the place at ∞ and the parity condition. Just choose a finite set S' of primes p. Discriminant = $\prod_{p \in S'} p^2$.

Let's count quaternion algebras over \mathbb{Q} ! (CSAs of dim. 4)

Hasse invariant \Rightarrow exactly one nontrivial quaternion algebra over each completion (over \mathbb{R} : Hamilton quaternions $\mathbb{R}[i, j, k]$).

Local–global principle for CSAs \Rightarrow choosing a quaternion algebra over \mathbb{Q} amounts to choosing a finite set *S* of places at which the local algebra is nontrivial. Small obstruction: |S| must be even.

⇒ We can ignore both the place at ∞ and the parity condition. Just choose a finite set S' of primes p. Discriminant = $\prod_{p \in S'} p^2$. ⇒ A quaternion algebra over \mathbb{Q} is uniquely determined by its discriminant, which is the square of a squarefree integer.

(i.e., there are as many quaternion algebras over \mathbb{Q} with discriminant $\leq X$ as there are squarefree integers $\leq \sqrt{X}$)

A quaternion algebra over $\mathbb Q$ is uniquely determined by its discriminant, which is the square of a squarefree integer. The corresponding Dirichlet series is

$$f(s) := \sum_{n \text{ squarefree}} n^{-2s} = \prod_{p \text{ prime}} (1 + p^{-2s}) = \prod_{p \text{ prime}} \frac{1 - p^{-4s}}{1 - p^{-2s}} = \frac{\zeta(2s)}{\zeta(4s)}$$

A quaternion algebra over \mathbb{Q} is uniquely determined by its discriminant, which is the square of a squarefree integer. The corresponding Dirichlet series is

$$f(s) := \sum_{n \text{ squarefree}} n^{-2s} = \prod_{p \text{ prime}} (1 + p^{-2s}) = \prod_{p \text{ prime}} \frac{1 - p^{-4s}}{1 - p^{-2s}} = \frac{\zeta(2s)}{\zeta(4s)}$$

 $\zeta(s){:}$ non-vanishing for $\Re(s)\geq 2,$ simple pole at s=1 of residue 1

A quaternion algebra over \mathbb{Q} is uniquely determined by its discriminant, which is the square of a squarefree integer. The corresponding Dirichlet series is

$$f(s) := \sum_{n \text{ squarefree}} n^{-2s} = \prod_{p \text{ prime}} (1 + p^{-2s}) = \prod_{p \text{ prime}} \frac{1 - p^{-4s}}{1 - p^{-2s}} = \frac{\zeta(2s)}{\zeta(4s)}$$

 $\zeta(s)$: non-vanishing for $\Re(s) \ge 2$, simple pole at s = 1 of residue 1 $\Rightarrow f$ has its rightmost pole at $s = \frac{1}{2}$, of order 1 and residue

$$\frac{1}{\zeta(2)} = \frac{6}{\pi^2}$$

A quaternion algebra over \mathbb{Q} is uniquely determined by its discriminant, which is the square of a squarefree integer. The corresponding Dirichlet series is

$$f(s) := \sum_{n \text{ squarefree}} n^{-2s} = \prod_{p \text{ prime}} (1 + p^{-2s}) = \prod_{p \text{ prime}} \frac{1 - p^{-4s}}{1 - p^{-2s}} = \frac{\zeta(2s)}{\zeta(4s)}$$

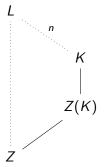
 $\zeta(s)$: non-vanishing for $\Re(s) \ge 2$, simple pole at s = 1 of residue 1 $\Rightarrow f$ has its rightmost pole at $s = \frac{1}{2}$, of order 1 and residue

$$\frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$

So the number of quaternion algebras with discriminant $\leq X$ is

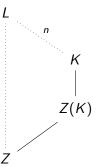
$$\sim {6 \over \pi^2} X^{1/2}$$

K a simple Q-algebra, $Z \subseteq Z(K)$, $n \ge 2$. We count extensions L|K of degree n with center Z.



K a simple \mathbb{Q} -algebra, $Z \subseteq Z(K)$, $n \ge 2$. We count extensions L|K of degree n with center Z. \Leftrightarrow Describe poles (location, order) of Dirichlet series

$$f(s) := \sum_{\text{ext. } L \mid K \text{ as above}} \|\text{Disc}(L)\|^{-s}$$

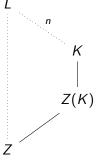


K a simple \mathbb{Q} -algebra, $Z \subseteq Z(K)$, $n \ge 2$. We count extensions L|K of degree n with center Z. \Leftrightarrow Describe poles (location, order) of Dirichlet series

 $f(s) := \sum_{\text{ext. } L \mid K \text{ as above}} \| \text{Disc}(L) \|^{-s}$

Local–global principle for CSAs \Rightarrow f (almost) factors:

$$f(s) = \prod_{p \text{ prime of } Z} f_p(s)$$



Z(K)

K a simple \mathbb{Q} -algebra, $Z \subseteq Z(K)$, $n \ge 2$. We count extensions L|K of degree n with center Z. \Leftrightarrow Describe poles (location, order) of Dirichlet series

 $f(s) := \sum_{\text{ext. } L \mid K \text{ as above}} \| \text{Disc}(L) \|^{-s}$

Local–global principle for CSAs \Rightarrow *f* (almost) factors:

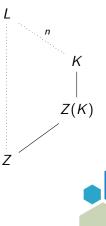
$$f(s) = \prod_{p \text{ prime of } Z} f_p(s)$$

Comparing this Euler product with a zeta function, we prove our main theorem...

K a simple \mathbb{Q} -algebra, $Z \subseteq Z(K)$, $n \geq 2$.

Theorem (Gundlach-S. '24)

For explicit $a, b \in \mathbb{Q}_{>0}$, $C \in \mathbb{R}_{\geq 0}$, the number of extensions L|K with Z(L) = Z, [L : K] = n, and $\|\text{Disc}(L)\| \leq X$ is $\underset{X \to \infty}{\sim} CX^{a}(\log X)^{b-1}$.



K a simple \mathbb{Q} -algebra, $Z \subseteq Z(K)$, $n \geq 2$.

Theorem (Gundlach-S. '24)

For explicit $a, b \in \mathbb{Q}_{>0}$, $C \in \mathbb{R}_{\geq 0}$, the number of extensions L|K with Z(L) = Z, [L : K] = n, and $\|\text{Disc}(L)\| \leq X$ is $\underset{X \to \infty}{\sim} CX^{a}(\log X)^{b-1}$.

Assume
$$Z(K)|Z$$
 is Galois of group G .
Let $M := \sqrt{n[K:Z]}$, $j := \sqrt{\frac{n}{[Z(K):Z]}}$.
(They have to be integers for L to exist.)
 $u :=$ smallest prime divisor of $j \cdot |G|$.
 $\beta :=$ proportion of $g \in G$ with $u \mid j \cdot \operatorname{ord}(g)$

$$a = M^2 \left(1 - \frac{1}{u}\right)$$
 $b = (u - 1)\beta.$

The expression for C is more complicated. Project A4 – Combinatorial Euler products – Béranger Seguin

L	n
	K Z(K)
Z	2(K)

Other work within Project A4

Combinatorial Euler products are also used to count:

- representations of arithmetic and profinite groups (Blomer, Voll)
- average kernel sizes of module representations over finite Artinian rings (Rossmann, Voll)

 wildly ramified extensions of function fields in characteristic p (Gundlach, Potthast, S.)

Come check our poster!

