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Now, g = p? is a prime power, K = Fo(T) a rational function field.

If p1 |G| (tame extensions): Malle’s conjecture recently proven for g large (ETW, LL).

If G is a p-group (wild extensions): abelian case ~ solved, general case mysterious...
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Theorem (Lazard correspondence)

There exists a Lie [Fp-algebra g such that

1
G~ (g.0) where o is the group law xoy := x+y + E[X' vl

~ the Lie algebra g can “play the role” of the group G
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Example of the Lazard correspondence

1F, F
Example: the Heisenberg group G = H(F,) = ( it IE‘Z)
1

~» corresponds to the Lie Fy-algebra g = ( 0 ]Fp) (via exponential/logarithm)
0

If K is a field of char p: we can base-change g into a Lie K-algebra

0KK
K:( 01<>
9 ®F, .

In that case, when we turn it back into a group, we get:

(g ®K,o0) ~ (”fg) = H(K)

~» simply the Heisenberg group over K!
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G-extensions of K set of orbits

By what invariant are we going to count? ~» we need to control ramification
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~> whole Galois group (K is a global field)

~» decomposition groups at various primes of K

~ inertia subgroups

~ higher inertia

Given all jumps, we can compute discriminant

We define the global invariant:

p

(when G is abelian, ~ the conductor)

lastjump(L|K) = Zdegp lastjump, (L|K)

~N
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Consequence: local counting = global counting
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Let K = Fy((T)) (local function field), v > 0 a positive real.

From Abrashkin’s nilpotent Artin-Schreier theory, we deduce:

Count G-extensions with lastjump(L|K) < v
<~

Count solutions of certain equations with indeterminates in the Lie [F-algebra g ® I,

In terms of coordinates: polynomial equations over F, (depending on g)

~» count the [F4-points of an algebraic variety over [F, (depending on g and v)
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- we consider more general Heisenberg groups... (for p > 3, we always have B =)




Thanks for your attention!

arXiv: 2502.18207



EXTRA SLIDE: the equations

Count G-ext. with lastjump(L|K) < v <= Count solutions of the following equations...

Variables: D, € g @ Fy for ptb<v )
Equations:
- Forany ptb<v, me,b2<b bi[Dy,. Dp,] = 0
bi+by=b
- Foranyi>1andany pfb> vp, > pbnby<v  bi[o'(Dy). Db, ] = 0
bip'+by=>b

\_ Y,




