
Asymptotics of wildly ramified
extensions of function fields

Béranger Seguin, Paderborn (Germany)
All results joint with Fabian Gundlach

Journées Arithmétiques, Belval, Luxembourg

June 30th, 2025



Background: counting field extensions

Question
K a field, G a finite group. Asymptotics as X → ∞ of∣∣∣{L|K Galois

∣∣∣ Gal(L|K) ≃ G, ||Disc(L|K)|| ≤ X
}∣∣∣

If K is a number field: solved for G abelian (Wright), conjecture for general G (Malle)

Now, q = pd is a prime power, K = Fq(T) a rational function field.

If p ∤ |G| (tame extensions): Malle’s conjecture recently proven for q large (ETW, LL).

If G is a p-group (wild extensions): abelian case ≈ solved, general case mysterious...
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p-groups of nilpotency class ≤ 2

p a prime ≥ 3, G a p-group. We want to count the G-extensions of Fq(T) for q = pd .

We assume:

– G has nilpotency class ≤ 2, i.e., G/Z(G) is abelian

1 → Z(G) → G → G/Z(G) → 1

– G has exponent p

Theorem (Lazard correspondence)
There exists a Lie Fp-algebra g such that

G ≃ (g, ◦) where ◦ is the group law x ◦ y := x + y +
1
2
[x, y]

; the Lie algebra g can “play the role” of the group G
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Example of the Lazard correspondence

Example: the Heisenberg group G = H(Fp) =
( 1 Fp Fp

1 Fp
1

)

; corresponds to the Lie Fp-algebra g =
( 0 Fp Fp

0 Fp
0

)
(via exponential/logarithm)

If K is a field of char p: we can base-change g into a Lie K-algebra

g⊗Fp K =
( 0 K K

0 K
0

)
In that case, when we turn it back into a group, we get:

(g⊗ K , ◦) ≃
(

1 K K
1 K

1

)
= H(K)

; simply the Heisenberg group over K !
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Parametrization of G-extensions

K a field of characteristic p, K a separable closure, ΓK = Gal(K |K).

Advantage of Lie algebras: we can base-change the group G = (g, ◦):

GK := (g⊗Fp K , ◦) GK := (g⊗Fp K , ◦)

These are equipped with a Frobenius σ (induced by x 7→ xp). Fixed points = G.

ΓK acts on GK , with fixed points = GK . We have a “Hilbert 90” property H1(ΓK ,GK ) = 1

; as in Artin–Schreier/Kummer theory, this leads to a parametrization:

H1(ΓK ,G)︸ ︷︷ ︸
G-extensions of K

≃ GK//GK︸ ︷︷ ︸
set of orbits

for the σ-conjugation action g.m = σ(g)mg−1

By what invariant are we going to count? ; we need to control ramification
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The ramification filtration and the last jump

G = Gal(L|K)
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; whole Galois group (K is a global field)

; decomposition groups at various primes of K

; inertia subgroups

; higher inertia

Given all jumps, we can compute discriminant

We define the global invariant:

lastjump(L|K) =
∑
p

deg p · lastjumpp(L|K)

(when G is abelian, ≈ the conductor)
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Main results

G = finite p-group of nilpotency class ≤ 2, K = Fq(T) for q = pd

Goal
Count G-extensions L|K with lastjump(L|K) = X .

Our main result is a local–global principle, phrased in terms of generating functions:

Theorem (Gundlach, S., 2025)∑
L|K

G-extension

X lastjump(L|K)

|Aut(L|K)|
=

∏
p prime

∑
Lp|Kp

G-extension

Xdeg p·lastjumpp(L|K)

|Aut(Lp|Kp)|

Consequence: local counting ⇒ global counting
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Local counting 1/2

Let K = Fq((T)) (local function field), v > 0 a positive real.

From Abrashkin’s nilpotent Artin–Schreier theory, we deduce:

Count G-extensions with lastjump(L|K) < v

⇐⇒

Count solutions of certain equations with indeterminates in the Lie Fq-algebra g⊗ Fq

In terms of coordinates: polynomial equations over Fq (depending on g)

; count the Fq-points of an algebraic variety over Fp (depending on g and v)
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Local counting 2/2

Theorem (Gundlach, S. 2025)
For some of these groups G, when K = Fq(T), we prove estimates of the form∑
L|K G-extension
lastjump(L|K)=N

1
|Aut(L|K)|

= C(N) · qAN · NB−1 + o(qAN · NB−1) as N → +∞

C is a periodic function Q → R≥0 with C(0) > 0, and A, B ∈ Q are explicit.

Examples:

– if dim g ≤ p− 1 and G is not abelian then A = 1+dim g
1+1/p and B = 1

– if p = 3 and G is the Heisenberg group
( 1 F3 F3

1 F3
1

)
, then A = 3 and B = 5

– we consider more general Heisenberg groups... (for p > 3, we always have B = 1)
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Thanks for your attention!

arXiv: 2502.18207



EXTRA SLIDE: the equations

Count G-ext. with lastjump(L|K) < v ⇐⇒ Count solutions of the following equations...

Variables: Db ∈ g⊗ Fq for p ∤ b < v
Equations:

– For any p ∤ b < v,
∑

p∤b1,b2<b
b1+b2=b

b1[Db1 ,Db2 ] = 0

– For any i ≥ 1 and any p ∤ b ≥ vpi ,
∑

p∤b1,b2<v
b1pi+b2=b

b1[σ
i(Db1),Db2 ] = 0


