Remarks on Fadelian Rings

March 18, 2022

1 The Weak Ore Property and Fadelianity (2022-05-12)

Let R be an integral ring.

Definition 1.1. We define the following subsets of R:

• \mathcal{F} is the set of fadelian elements:

 $\mathcal{F} = \{ x \in R \mid \forall a \in R \setminus \{0\}, \exists b, c \in R, x = ab + ca \};$

• \mathcal{L} is the set of left Ore elements:

$$\mathcal{L} = \{ x \in R \mid \forall a \in R \setminus \{0\}, \exists b, c \in R \setminus \{0\}, ba = cx \};$$

• \mathcal{R} is the set of right Ore elements:

$$\mathcal{R} = \{x \in R \mid \forall a \in R \setminus \{0\}, \exists b, c \in R \setminus \{0\}, ab = xc\};\$$

Proposition 1.2. We claim the following:

- \mathcal{L} , \mathcal{R} and \mathcal{F} are stable by multiplication by an element of Z(R).
- \mathcal{L} and \mathcal{R} contain units of R;
- \mathcal{L} and \mathcal{R} are multiplicatively closed;
- \mathcal{F} is additively closed.

Proof. We prove the statements in order:

- This is clear;
- If $x \in \mathbb{R}^{\times}$ and $a \neq 0$, then $a \cdot 1 = x \cdot (x^{-1}a)$ and $1 \cdot a = (ax^{-1}) \cdot x$.
- Let's prove the claim for \mathcal{L} . Let $x, y \in \mathcal{L}$ and $a \neq 0$. Choose nonzero b, c such that ba = cy. Now choose nonzero b', c' such that b'c = c'x. Then:

$$c'xy = b'cy = b'ba.$$

• If x = ab + ca and x' = ab' + c'a then x + x' = a(b + b') + (c + c')a.

Proposition 1.3. \mathcal{F} is stable by left-multiplication with an element of \mathcal{R} , and by right-multiplication with an element of \mathcal{L} .

Proof. Let w = xyz with $x \in \mathcal{R}, y \in \mathcal{F}, z \in \mathcal{L}$. Consider $a \in R \setminus \{0\}$. Fix $b, c \neq 0$ such that ab = xc and $b', c' \neq 0$ such that b'a = c'z. Now choose u, v such that:

$$y = ucc' + cc'v.$$

We have:

$$w = xyz = xucc'z + xcc'vz = xucb'a + abc'vz \in Ra + aR.$$

This proves the result.

Definition 1.4. We say that R satisfies the weak Ore property if every element x may be written as a sum:

$$x = r_1 l_1 + \ldots + r_n l_n$$

where $r_i \in \mathcal{R}$ and $l_i \in \mathcal{L}$.

For example, if R is Ore or additively generated by its units, it satisfies the weak Ore property.

Theorem 1.5. If R is weakly fadelian and satisfies the weak Ore property, then R is fadelian.

Proof. Since R is weakly fadelian, we have $1 \in \mathcal{F}$, and thus $\mathcal{RL} \subseteq \mathcal{F}$ by proposition 1.3. Since \mathcal{F} is additively closed, all elements of the form $\sum r_i l_i$ with $r_i \in \mathcal{R}, l_i \in \mathcal{L}$ are in \mathcal{F} . By the weak Ore property, we have:

$$\mathcal{F} = R.$$

This means that R is fadelian.